• CUBE - Computational Systems Biology

  • DOME - Microbial Ecology

  • TER - Terrestrial Ecosystem Research

DMES News

Latest publications

Detection of Chlamydiaceae and Chlamydia-like organisms on the ocular surface of children and adults from a trachoma-endemic region

Trachoma, the leading infectious cause of blindness, is caused by Chlamydia trachomatis (Ct), a bacterium of the phylum Chlamydiae. Recent investigations revealed the existence of additional families within the phylum Chlamydiae, also termed Chlamydia-like organisms (CLOs). In this study, the frequency of Ct and CLOs was examined in the eyes of healthy Sudanese (control) participants and those with trachoma (case). We tested 96 children (54 cases and 42 controls) and 93 adults (51 cases and 42 controls) using broad-range Chlamydiae and Ct-specific (omcB) real-time PCR. Samples positive by broad-range Chlamydiae testing were subjected to DNA sequencing. Overall Chlamydiae prevalence was 36%. Sequences corresponded to unclassified and classified Chlamydiae. Ct infection rate was significantly higher in children (31.5%) compared to adults (0%) with trachoma (p < 0.0001). In general, 21.5% of adults and 4.2% of children tested positive for CLOs (p = 0.0003). Our findings are consistent with previous investigations describing the central role of Ct in trachoma among children. This is the first study examining human eyes for the presence of CLOs. We found an age-dependent distribution of CLO DNA in human eyes with significantly higher positivity in adults. Further studies are needed to understand the impact of CLOs in trachoma pathogenicity and/or protection.

Ghasemian E, Inic-Kanada A, Collingro A, Tagini F, Stein E, Alchalabi H, Schuerer N, Keše D, Babiker BE, Borel N, Greub G, Barisani-Asenbauer T
2018 - Sci Rep, 1: 7432

pH-Dependent Bioavailability, Speciation, and Phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans

Increasing use of tungsten (W)-based products opened new pathways for W into environmental systems. Due to its chemical alikeness with molybdenum (Mo), W is expected to behave similarly to its “twin element”, Mo; however, our knowledge of the behavior of W in the plant−soil environment remains inadequate. The aim of this study was to investigate plant growth as well as W and nutrient uptake depending on soil chemical properties such as soil pH and texture. Soybean (Glycine max cv. Primus) was grown on two acidic soils differing in soil texture that were either kept at their natural soil pH (pH of 4.5−5) or limed (pH of ≥7) and amended with increasing concentrations of metallic W (control and 500 and 5000 mg kg−1 ). In addition, the activity of molybdoenzymes involved in N assimilation (nitrate reductase) and symbiotic N2 fixation (nitrogenase) was also investigated. Our results showed that the risk of W entering the food web was significantly greater in high-pH soils due to increased solubility of mainly monomeric W. The effect of soil texture on W solubility and phytoavailability was less pronounced compared to soil pH. Particularly at intermediate W additions (W 500 mg kg−1 ), symbiotic nitrogen fixation was able to compensate for reduced leaf nitrate reductase activity. When W soil solution concentrations became too toxic (W 5000 mg kg−1 ), nodulation was more strongly inhibited than nitrogenase activity in the few nodules formed, suggesting a more-efficient detoxification and compartmentalization mechanism in nodules than in soybean leaves. The increasing presence of polymeric W species observed in low-pH soils spiked with high W concentrations resulted in decreased W uptake. Simultaneously, polymeric W species had an overall negative effect on nutrient assimilation and plant growth, suggesting a greater phytotoxicity of W polymers. Our study demonstrates the importance of accounting for soil pH in risk assessment studies of W in the plant−soil environment, something that has been completely neglected in the past.

Oburger E, Cid CV, Preiner J, Hu J, Hann S, Wanek W, Richter A
2018 - Environmental Science & Technology, in press

Long-distance electron transport in individual, living cable bacteria

Electron transport within living cells is essential for energy conservation in all respiring and photosynthetic organisms. While a few bacteria transport electrons over micrometer distances to their surroundings, filaments of cable bacteria are hypothesized to conduct electric currents over centimeter distances. We used resonance Raman microscopy to analyze cytochrome redox states in living cable bacteria. Cable-bacteria filaments were placed in microscope chambers with sulfide as electron source and oxygen as electron sink at opposite ends. Along individual filaments a gradient in cytochrome redox potential was detected, which immediately broke down upon removal of oxygen or laser cutting of the filaments. Without access to oxygen, a rapid shift toward more reduced cytochromes was observed, as electrons were no longer drained from the filament but accumulated in the cellular cytochromes. These results provide direct evidence for long-distance electron transport in living multicellular bacteria.

Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, Tataru P, Meysman FJR, Wagner M, Nielsen LP, Schramm A
2018 - Proc Natl Acad Sci U S A, ahead of print

Lecture series

Eco-Evolutionary Dynamics of Microbial Populations in the Wild

Martin Polz
Massachusetts Institute of Technology
14.06.2018
12:00 h
Hörsaal 2, UZA 1, Althanstr. 14, 1090 Wien