• CUBE - Computational Systems Biology

  • DOME - Microbial Ecology

  • TER - Terrestrial Ecosystem Research


Latest publications

The origin and evolution of cell types.

Cell types are the basic building blocks of multicellular organisms and are extensively diversified in animals. Despite recent advances in characterizing cell types, classification schemes remain ambiguous. We propose an evolutionary definition of a cell type that allows cell types to be delineated and compared within and between species. Key to cell type identity are evolutionary changes in the 'core regulatory complex' (CoRC) of transcription factors, that make emergent sister cell types distinct, enable their independent evolution and regulate cell type-specific traits termed apomeres. We discuss the distinction between developmental and evolutionary lineages, and present a roadmap for future research.

Arendt D, Musser JM, Baker CV, Bergman A, Cepko C, Erwin DH, Pavličev M, Schlosser G, Widder S, Laubichler MD, Wagner GP
2016 - Nat. Rev. Genet., 12: 744-757

Stress-induced changes in carbon allocation among metabolite pools influence isotope-based predictions of water use efficiency in Phaseolus vulgaris

Understanding how major food crops respond to environmental stress will expand our capacity to improve food production with growing populations and a changing climate. This study uses chemical and physiological adaptations to heat, water deficit and elevated light stresses in Phaseolus vulgaris L. to identify changes in carbon (C) allocation that, combined with post-photosynthetic fractionation of C isotopes, influences water use efficiency (WUE) predictions. The chemical stress response was explored through changes in C allocation to the carbohydrate and cyclitol pools using GC–triple quadrupole MS. Carbon allocation to the sucrose pool fluctuated significantly among treatments, and the putative osmolytes and osmoprotectants (myo-inositol and D-ononitol) accumulated under stress. Significant osmotic adjustment (P < 0.05), quantified via pressure–volume curve analysis, was detected between control and stress treatments, although this was not attributable to active accumulation of the metabolites. Compound-specific 13C isotope abundance was measured using liquid chromatography isotope ratio MS to predict intrinsic WUE. In contrast to other metabolites measured, the δ13C of the sucrose pool fluctuated according to treatment and was proportional to predicted values based upon modelled Δ13C from gas exchange data. The results suggest that the accuracy and precision of predicting WUE may be enhanced by compound-specific analysis of Δ13C and that changes in the allocation of C among metabolite pools may influence WUE predictions based upon analysis of total soluble C. Overall, the plants appeared to use a range of mechanisms to cope with adverse conditions that could be utilised to improve plant breeding and management strategies.

Lockhart R, Wild B, Richter A, Simonin K, Merchant A
2016 - Functional Plant Biology, 1149-1158

Genome-guided design of a novel defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium

Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse Microbiota (Oligo-MM12), representing members of the major bacterial phyla in the murine gut, was selected. This community was stable over consecutive mouse generations and provided colonization resistance against S. Tm infection, albeit not to the degree of a conventional complex microbiota. Comparative (meta)genome analyses identified functions represented in a conventional microbiome but absent from the Oligo-MM12. By genome-informed design, we created an improved version of the Oligo-MM community harbouring three facultative anaerobic bacteria from the Mouse Intestinal Bacterial Collection (miBC) that provided conventional-like colonization resistance. In conclusion, we have established a highly versatile experimental system that showed efficacy in an enteric infection model. Thus, in combination with exhaustive bacterial strain collections and systems-based approaches, genomeguided design can be used to generate insights into microbe–microbe and microbe–host interactions for the investigation of ecological and disease-relevant mechanisms in the intestine.

Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh H-J, Ring D, Diehl M, Herp S, Lötscher Y, Hussain S, Bunk B, Pukall R, Huson DH, Münch PC, McHardy AC, McCoy KD, Macpherson AJ, Loy A, Clavel T, Berry D, Stecher B
2016 - Nature Microbiol, In press

Lecture series

LC-MS Approaches in Metabolomics

Gunda Köllensperger, Prof.
University of Vienna, Department of Analytical Chremistry
13:15 h
Seminar Room 'Ökologie', UZA 1