Metamenu

  • Centre for Microbiology and Environmental Systems Science

  • CUBE - Computational Systems Biology

  • DOME - Microbial Ecology

  • EDGE - Environmental Geosciences

  • TER - Terrestrial Ecosystem Research

News

Latest publications

Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest

Biological nitrogen fixation (BNF) is a fundamental part of nitrogen cycling in tropical forests, yet little is known about the contribution made by free-living nitrogen fixers inhabiting the often-extensive forest canopy. We used the acetylene reduction assay, calibrated with 15N2, to measure free-living BNF on forest canopy leaves, vascular epiphytes, bryophytes and canopy soil, as well as on the forest floor in leaf litter and soil. We used a combination of calculated and published component densities to upscale free-living BNF rates to the forest level. We found that bryophytes and leaves situated in the canopy in particular displayed high mass-based rates of free-living BNF. Additionally, we calculated that nearly 2 kg of nitrogen enters the forest ecosystem through free-living BNF every year, 40% of which was fixed by the various canopy components. Our results reveal that in the studied tropical lowland forest a large part of the nitrogen input through free-living BNF stems from the canopy, but also that the total nitrogen inputs by free-living BNF are lower than previously thought and comparable to the inputs of reactive nitrogen by atmospheric deposition.

Van Langenhove L, Depaepe T, Verryckt LT, Fuchslueger L, Leroy JDC, Moorthy SMK, Gargallo-Garriga A, Ellwood MDF, Verbeeck H, Van Der Straeten D, Peñuelas J, Janssens IA
2021 - Science of The Total Environment, 754: Article 142202

Empirical support for the biogeochemical niche hypothesis in forest trees

The possibility of using the elemental compositions of species as a tool to identify species/genotype niche remains to be tested at a global scale. We investigated relationships between the foliar elemental compositions (elementomes) of trees at a global scale with phylogeny, climate, N deposition and soil traits. We analysed foliar N, P, K, Ca, Mg and S concentrations in 23,962 trees of 227 species. Shared ancestry explained 60–94% of the total variance in foliar nutrient concentrations and ratios whereas current climate, atmospheric N deposition and soil type together explained 1–7%, consistent with the biogeochemical niche hypothesis which predicts that each species will have a specific need for and use of each bio-element. The remaining variance was explained by the avoidance of nutritional competition with other species and natural variability within species. The biogeochemical niche hypothesis is thus able to quantify species-specific tree niches and their shifts in response to environmental changes.

Sardans J, Vallicrosa H, Zuccarini P, Farré-Armengol G, Fernández-Martínez M, Guille P, Gargallo-Garriga A, Ciais P, Janssens IA, Obersteiner M, Richter A, Peñuelas J
2021 - Nature Ecology & Evolution, 5: 184-194

Methanol-based extraction protocol for insoluble and moderately water-soluble nanoparticles in plants to enable characterization by single particle ICP-MS

The detection and characterization of soluble metal nanoparticles in plant tissues are an analytical challenge, though a scientific necessity for regulating nano-enabled agrichemicals. The efficacy of two extraction methods to prepare plant samples for analysis by single particle ICP-MS, an analytical method enabling both size determination and quantification of nanoparticles (NP), was assessed. A standard enzyme-based extraction was compared to a newly developed methanol-based approach. Au, CuO, and ZnO NPs were extracted from three different plant leaf materials (lettuce, corn, and kale) selected for their agricultural relevance and differing characteristics. The enzyme-based approach was found to be unsuitable because of changes in the recovered NP size distribution of CuO NP. The MeOH-based extraction allowed reproducible extraction of the particle size distribution (PSD) without major alteration caused by the extraction. The type of leaf tissue did not significantly affect the recovered PSD. Total metal losses during the extraction process were largely due to the filtration step prior to analysis by spICP-MS, though this did not significantly affect PSD recovery. The methanol extraction worked with the three different NPs and plants tested and is suitable for studying the fate of labile metal-based nano-enabled agrichemicals.

Stephanie Laughton, Adam Laycock, Garret Bland, Frank von der Kammer, Thilo Hofmann, Elizabeth A. Casman, Gregory V. Lowry
2021 - Analytical and Bioanalytical Chemistry, 413: 299–314

Lecture series

Biogeochemical Cycling of Soil Organic Matter within Wildfire and Permafrost Thaw Affected Ecosystems

Prof. Dr. Thomas Borch
Department of Soil and Crop Sciences, Colorado State University, USA
20.05.2021
17:00 h
Online

Opening the river bioreactor blackbox: Considering chemical diversity of natural organic matter in river networks

Prof. Dr. Gabriel Singer
Department of Ecology, University of Innsbruck, Austria
27.05.2021
17:00 h
Online