Metamenu

Publications

The fulltext of publications might not be freely accessible but require subscription. Please contact the authors to request reprints.

Publications in peer reviewed journals

20 Publications found
  • Redox Heterogeneities Promote Thioarsenate Formation and Release into Groundwater from Low Arsenic Sediments

    Naresh Kumar, Vincent Noël, Britta Planer-Friedrich, Johannes BesoldJ, uan Lezama-Pacheco, John R. Bargar, Gordon E. Brown Jr., Scott Fendorf, Kristin Boye
    2020 - Environmental Science & Technology, 54, 6, 3237–3244

    Abstract: 

    Groundwater contamination by As from natural and anthropogenic sources is a worldwide concern. Redox heterogeneities over space and time are common and can influence the molecular-level speciation of As, and thus, As release/retention but are largely unexplored. Here, we present results from a dual-domain column experiment, with natural organic-rich, fine-grained, and sulfidic sediments embedded as lenses (referred to as “reducing lenses”) within natural aquifer sand. We show that redox interfaces in sulfur-rich, alkaline aquifers may release concerning levels of As, even when sediment As concentration is low (<2 mg/kg), due to the formation of mobile thioarsenates at aqueous sulfide/Fe molar ratios <1. In our experiments, this behavior occurred in the aquifer sand between reducing lenses and was attributed to the spreading of sulfidic conditions and subsequent Fe reductive dissolution. In contrast, inside reducing lenses (and some locations in the aquifer) the aqueous sulfide/Fe molar ratios exceeded 1 and aqueous sulfide/As molar ratios exceeded 100, which partitioned As(III)–S to the solid phase (associated with organics or as realgar (As4S4)). These results highlight the importance of thioarsenates in natural sediments and indicate that redox interfaces and sediment heterogeneities could locally degrade groundwater quality, even in aquifers with unconcerning solid-phase As concentrations.

  • Groundwater Chemistry Has a Greater Influence on the Mobility of Nanoparticles Used for Remediation than the Chemical Heterogeneity of Aquifer Media

    Malfatti SE, Nathan Bossa, Doris Schmid, Mark R. Wiesner, Thilo Hofmann
    2020 - Environmental Science & Technology, 54: 1250-1257

    Abstract: 

    The application of nanoscale zerovalent iron (nano-ZVI) particles for groundwater remediation has spurred research into the influence of the collector heterogeneity on the  nano-ZVI mobility. The chemical heterogeneity of surfaces within aquifer media affects their surface charge distribution and their affinity for nano-ZVI. The groundwater chemistry affects the properties of both aquifer surfaces and the nano-ZVI particles. Commercial poly(acrylic acid)-coated nano-ZVI (PAA−nano-ZVI) particles were tested in column experiments using two solution chemistries and silica collectors with different degrees of chemical heterogeneity, achieved by ferrihydrite coating. A porous media filtration model was used to determine the attachment efficiency of PAA−nano-ZVI particles, and the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory was used to describe the interactions between PAA−nano-ZVI particles and the aquifer “collectors”. The mobility of PAA−nano-ZVI particles suspended in ultrapure water depended on the extent of ferrihydrite coating on the collector surfaces. The mobility of PAA−nano-ZVI particles under environmentally relevant conditions was independent of the collector chemical heterogeneity. The size of PAA−nano-ZVI aggregates doubled, inducing gravitational sedimentation and possibly straining as mechanisms of particle deposition. There was no repulsive energy barrier between particles and collectors, and the DLVO theory was unable to explain the observed particle attachment. Our results suggest that the groundwater chemistry has a greater influence on the mobility of PAA−nano-ZVI particles than the collector chemical heterogeneity. A better understanding of polymer adsorption to nanoparticles and its conformation under natural groundwater conditions is needed to further elucidate nanoparticle−collector interactions.

  • Core–Shell Fe/FeS Nanoparticles with Controlled Shell Thickness for Enhanced Trichloroethylene Removal

    Miroslav Brumovský, Jan Filip, Ondřej Malina, Jana Oborná, Ondra Sracek, Thomas G. Reichenauer, Pavlína Andrýsková, Radek Zbořil
    2020 - ACS Applied Materials & Interfaces, 12: 35424–35434

    Abstract: 

    Zero-valent iron nanoparticles (nZVI) treated by reduced sulfur compounds (i.e., sulfidated nZVI, S-nZVI) have attracted increased attention as promising materials for environmental remediation. While the preparation of S-nZVI and its reactions with various groundwater contaminants such as trichloroethylene (TCE) were already a subject of several studies, nanoparticle synthesis procedures investigated so far were suited mainly for laboratory-scale preparation with only a limited possibility of easy and cost-effective large-scale production and FeS shell property control. This study presents a novel approach for synthesizing S-nZVI using commercially available nZVI particles that are treated with sodium sulfide in a concentrated slurry. This leads to S-nZVI particles that do not contain hazardous boron residues and can be easily prepared off-site. The resulting S-nZVI exhibits a core–shell structure where zero-valent iron is the dominant phase in the core, while the shell contains mostly amorphous iron sulfides. The average FeS shell thickness can be controlled by the applied sulfide concentration. Up to a 12-fold increase in the TCE removal and a 7-fold increase in the electron efficiency were observed upon amending nZVI with sulfide. Although the FeS shell thickness correlated with surface-area-normalized TCE removal rates, sulfidation negatively impacted the particle surface area, resulting in an optimal FeS shell thickness of approximately 7.3 nm. This corresponded to a particle S/Fe mass ratio of 0.0195. At all sulfide doses, the TCE degradation products were only fully dechlorinated hydrocarbons. Moreover, a nearly 100% chlorine balance was found at the end of the experiments, further confirming complete TCE degradation and the absence of chlorinated transformation products. The newly synthesized S-nZVI particles thus represent a promising remedial agent applicable at sites contaminated with TCE.

  • Key principles and operational practices for improved nanotechnology environmental exposure assessment

    Claus Svendsen, Lee A. Walker, Marianne Matzke, Elma Lahive, Samuel Harrison, Alison Crossley, Barry Park, Stephen Lofts, Iseult Lynch, Socorro Vázquez-Campos, Ralf Kaegi, Alexander Gogos, Christof Asbach, Geert Cornelis, Frank von der Kammer, Nico W. van den Brink, Claire Mays, David J. Spurgeon
    2020 - Nature Nanotechnology, 15: 731–742

    Abstract: 

    Nanotechnology is identified as a key enabling technology due to its potential to contribute to economic growth and societal well-being across industrial sectors. Sustainable nanotechnology requires a scientifically based and proportionate risk governance structure to support innovation, including a robust framework for environmental risk assessment (ERA) that ideally builds on methods established for conventional chemicals to ensure alignment and avoid duplication. Exposure assessment developed as a tiered approach is equally beneficial to nano-specific ERA as for other classes of chemicals. Here we present the developing knowledge, practical considerations and key principles need to support exposure assessment for engineered nanomaterials for regulatory and research applications.

  • Anthropogenic gadolinium in freshwater and drinking water systems

    Robert Brünjes and Thilo Hofmann
    2020 - Water Research, 182: 115966

    Abstract: 

    The increasing use of gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging is leading to widespread contamination of freshwater and drinking water systems. Contrary to previous assumptions that GBCAs are stable throughout the water cycle, they can degrade. The stability of GBCAs depends largely on their organic ligands, but also on the physicochemical conditions. There is specific concern regarding UV end-of-pipe water treatments, which may degrade GBCAs. Degradation products in drinking water supplies can increase the risk of adverse health effects. This is of particular relevance where the raw water for drinking water production has a higher proportion of recycled wastewater. GBCAs concentrations in aquatic systems, often referred to as anthropogenic gadolinium, are determined using a variety of calculation methods. Where anthropogenic gadolinium concentrations are low, the inconsistent use of these methods results in high discrepancies and high levels of uncertainty. The current COVID-19 crisis will, in the short-term, drastically decrease the input of GBCAs to freshwater systems. Temporal variations in anthropogenic gadolinium concentrations in river water can be used to better understand river-aquifer interactions and groundwater flow velocities. Collecting urine from all patients following MRI examinations could be a way forward to halt the generally increasing concentrations of Gd in drinking water systems and recover this technologically critical element.

  • Remediation of fluoride contaminated water using encapsulated active growing blue-green algae, Phormidium sp.

    Yamini Mittal, Pratiksha Srivastav, Naresh Kumar, Asheesh KumarYadav
    2020 - Environmental Technology and Innovation, 19: 100855

    Abstract: 

    Elevated fluoride concentration in drinking water is a global concern that impacts health of millions. Developing low cost remediation methods empower communities with fewer resources available to protect their health.

    Together with colleagues from CSIR India, and University of Tasmania in Australia, we have demonstrated that fluoride can be removed by using common blue-green algae, Phormidium sp. Using Response Surface Methodology (RSM) we were able to optimize parameters for the highest fluoride removal in our system. Further work is currently ongoing on process optimization to develop a household level pilot scale experimental reactor in a small village in eastern India.

  • The removal of lead, copper, zinc and cadmium from aqueous solution by biochar and amended biochars

    Stuart Cairns, Ian Robertson, Gabriel Sigmund, Alayne Street-Perrott
    2020 - Environmental Science and Pollution Research, 27: 21702-21715

    Abstract: 

    The exponential growth in the use of motor vehicles is a key contributor to freshwater degradation. Current remediation techniques require prohibitively expensive contaminant treatment and extraction. Biochar represents an inexpensive option to ameliorate contaminants from motorway runoff. Biochar from Norway spruce (Picea abies (L.) Karst.) was produced under fast pyrolysis-gasification (450–500 °C for 90 s) and amended with wood ash and basaltic rock dust to evaluate sorption of Pb, Cu, Zn and Cd. The column study, designed to mimic field conditions, confirmed that unamended biochar can bind contaminants for short periods, but that the addition of amendments, particularly wood ash, significantly improves contaminant removal. Wood ash-amended biochar removed 98–100% of all contaminants during the study, driven by pH (r = 0.73–0.74; p < 0.01 dependent on metal species) and phosphorus levels causing precipitation (r = 0.47–0.59; p < 0.01, dependent on metal species). The contaminants’ progression through the biochar subsections in the column indicated that increasing the thickness of the biochar layer increased contaminant residence time and removal.

  • Identifying the reactive sites of hydrogen peroxide decomposition and hydroxyl radical formation on chrysotile asbestos surfaces

    Martin Walter, Walter D. C. Schenkeveld, Gerald Geroldinger, Lars Gille, Michael Reissner & Stephan M. Kraemer
    2020 - Particle and Fibre Toxicology, 17: 3

    Abstract: 

    Chrysotile asbestos is a carcinogenic mineral that has been abundantly used in different industrial and consumer applications. The fibers’ toxicity is partly goverend by the formation of highly reative radicals by active surface sites.

    Stephan Kraemer from EDGE together with the former PhD student Martin Walter and university assistant Walter Schenkeveld investigated these reactive sites on chrysotile asbestos surfaces, in cooperation with the collegues Lars Gille and Gerald Geroldinger from VetMed Vienna and Michael Reissner from TU Vienna.

    The authors identified tetrahedrally coordinated Fe on the surface of chrysotile asbestos as the only relevant site in the formation of the highly reactive and toxic hydroxyl radicals, which readily damage DNA, proteins and lipids and hence contribute to the pathogenicity of the fibers. Fe added to chrysotile fibers increased the formation of hydroxyl radicals only when it became incorporated and coordinated into tetrahedral vacancy sites on asbestos surfaces.

  • Carbonates and cherts as archives of seawater chemistry and habitability on a carbonate platform 3.35 Ga ago: Insights from Sm/Nd dating and trace element analysis from the Strelley Pool Formation, Western Australia

    Sebastian Viehmann. Joachim Reitner, NathalieTepe, Simon V. Hohl, Martin Van Kranendonk, Thilo Hofmann, Christian Koeberl, Patrick Meister
    2020 - Precambrian Research, 344: 105742

    Abstract: 

    Carbonates and cherts in the 3.35 billion-year-old Strelley Pool Formation (Fm.; Australia) host stromatolites that are among the oldest remnants of life on Earth. However, it is still not entirely clear whether these mineral phases are authigenic precipitates, and whether they represent reliable geochemical archives of early Earth environments. Here we present major/trace-element and Nd-isotope data of stromatolitic carbonates, associated crystal-fan carbonates, and cherts in the Strelley Pool Fm. (i) to assess the reliability of these chemical sediments as geochemical archives of the fluids from which they precipitated, (ii) to date the time of formation of carbonate and silica phases, and (iii) to trace the sources of elements prevailing in microbial habitats 3.35 Ga ago.

    Stromatolitic carbonates plot together with the stratigraphically underlying Marble Bar cherts on a Sm-Nd regression line yielding 3253 ± 320 Ma. In contrast, associated crystal-fan carbonates together with altered Marble Bar cherts yield 2718 ± 220 Ma, suggesting that their Sm-Nd isotope system was reset after deposition. Both types of carbonates, as well as white cherts, show shale-normalized rare earth element and yttrium patterns (REYSN; with the exception of redox-sensitive Ce and Eu and heavy REYSN to middle REYSN depletion) that are parallel to those of modern seawater, indicating a predominantly seawater-derived origin. Positive EuSN anomalies (2.1–2.4), combined with heterogeneous ɛNd3.35Ga values between −3.2 and +5.8 within individual alternating stromatolite laminae, further support that the dissolved fraction of seawater on the ancient carbonate platform was variably affected by both continental weathering and high-temperature hydrothermal fluids contributing elements of both young mafic or older felsic rocks. In conclusion, trace element and Nd isotope data presented here match well with the depositional environment, as characterized based on lithological, geochemical, and stratigraphic relationships, on an early continent, showing at least episodic emergence above the sea level, supporting microbial life on a shallow marine platform.

     
    • The molecular interactions of organic compounds with tire crumb materials differ substantially from those with other microplastics

      Thorsten Hüffer, Maren Wehrhahn, Thilo Hofmann
      2020 - Environmental Science: Processes & Impacts, 22: 121-130

      Abstract: 

      Tire materials are the most commonly found elastomers in the environment and they account for a significant fraction of microplastic pollution. In the discussions on the environmental impact of microplastics tire materials and their sorption properties have been largely overlooked. In this study we used experimental sorption data from six organic probe sorbates sorbing to two tire materials and their major components, styrene butadiene rubber and carbon black, to gain a better understanding of the underlying sorption processes of tire materials. Commonly applied models used to describe non-linear sorption processes were unable to fully explain sorption to tire materials but showed that absorption into the rubber fraction dominated the sorption process. Hydrophobicity was approximated using the hexadecane–water partitioning constant, which correlated very well with the distribution data obtained for styrene rubber, whereas the correlations between hydrophobicity of sorbates and the sorption data to the tire materials were poor. Although hydrophobicity plays an important role in sorption to tire materials, additional interactions must be taken into account. Overall, the processes involved in sorption to tire materials differed significantly from those governing sorption to other microplastics.

    • Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture

      Thilo Hofmann, Gregory Victor Lowry, Subhasis Ghoshal, Nathalie Tufenkji, Davide Brambilla, John Robert Dutcher, Leanne M. Gilbertson, Juan Pablo Giraldo, Joseph Matthew Kinsella, Markita Patricia Landry, Wess Lovell, Rafik Naccache, Mathews Paret, Joel Alexander Pedersen, Jason Michael Unrine, Jason Christopher White, Kevin James Wilkinson
      2020 - Nature food, 1: 416–425

      Abstract: 

      Nanotechnology offers potential solutions for sustainable agriculture, including increasing nutrient utilization efficiency, improving the efficacy of pest management, mitigating the impacts of climate change, and reducing adverse environmental impacts of agricultural food production. Many promising nanotechnologies have been proposed and evaluated at different scales, but several barriers to implementation must be addressed for technology to be adopted, including efficient delivery at field scale, regulatory and safety concerns, and consumer acceptance. Here we explore these barriers, and rank technology readiness and potential impacts of a wide range of agricultural applications of nanotechnology. We propose pathways to overcome these barriers and develop effective, safe and acceptable nanotechnologies for agriculture.

    • Intra-laboratory assessment of a method for the detection of TiO2 nanoparticles present in sunscreens based on multi-detector asymmetrical flow field-flow fractionation

      Milica Velimirovic, Stephan Wagner, Robert Koeber, Thilo Hofmann, Frank von der Kammer
      2020 - NanoImpact, 19: 100233

      Abstract: 

      In this study, an intra-laboratory assessment was carried out to establish the effectiveness of a method for the detection of TiO2 engineered nanoparticles (ENPs) present in sunscreen containing nano-scale TiO2 and a higher nanometer-range (approx. 200–500 nm) TiO2, as well as iron oxide particles. Three replicate measurements were performed on five separate days to generate the measurement uncertainties associated with the quantitative asymmetrical flow field-flow fractionation (AF4) measurement of the hydrodynamic radius rh,mode1 (MALS), rh,mode1 (ICP-MS), rh,mode2 (ICP-MS), and calculated mass-based particle size distribution (d10, d50, d90). The validation study demonstrates that the analysis of TiO2 ENPs present in sunscreen by AF4 separation-multi detection produces quantitative data (mass-based particle size distribution) after applying the sample preparation method developed within the NanoDefine project with uncertainties based on the precision (uIP) of 3.9–8.8%. This method can, therefore, be considered as the method with a good precision. Finally, the bias data shows that the trueness of the method (ut = 5.5–52%) can only be taken as a proxy due to the lack of a sunscreen standard containing certified TiO2 ENPs.

    • Deep Learning Neural Network Approach for Predicting the Sorption of Ionizable and Polar Organic Pollutants to a Wide Range of Carbonaceous Materials

      Gabriel Sigmund, Mehdi Gharasoo, Thorsten Hüffer, Thilo Hofmann
      2020 - Environmental Science & Technology, 54: 4583-4591

      Abstract: 

      Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log KF and n (R2 > 0.98 for log KF, and R2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.

    • Accurate quantification of TiO2 nanoparticles in commercial sunscreens using standard materials and orthogonal particle sizing methods for verification

      Milica Velimirovic, Stephan Wagner, Fazel Abdolahpur Monikh, Toni Uusimäki, Ralf Kaegi, Thilo Hofmann, Frank von der Kammer
      2020 - Talanta, 215: 120921

      Abstract: 

      The implementation and enforcement of product labeling obligation as required, for example, by the cosmetic product regulation, needs simple and precise validated analytical methods. This also applies to the analysis of nanoparticles in products such as cosmetics. However, the provision of such methods is often hampered by inaccurate sizing due to unwanted nanoparticle changes, interference of matrix components with sizing and interactions between nanoparticles and analytical instrumentation. It is, therefore, necessary to develop appropriate sample preparation methods that preserve NP properties and reduce or remove matrix compounds that interfere with sizing. Further, accurate particle size analysis of samples containing unknown and possibly multiple nanoparticulate constituents is needed. In this study, we evaluated three sample preparation methods to identify and quantify TiO2 nanoparticles in sunscreens. Specifically, we used a combination of ultracentrifugation and hexane washing, thermal destruction of the matrix, and surfactant assisted particle extraction. The method accuracy was assessed by two internal reference samples: pristine TiO2 nanoparticles (NM104) and similar TiO2 nanoparticles dispersed in a sunscreen matrix. The PSDs were determined using an asymmetrical flow field-flow fractionation hyphenated with multi-angle light scattering and inductively coupled plasma-mass spectroscopy. Particle sizing was based on size calibration of the particle retention time in the AF4. Computation of radius of gyration from MALS data was used as an orthogonal particle sizing approach to verify ideal elution and particle size data from the AF4 calibration. Among the three tested sample preparation methods surfactant assisted particle extraction revealed TiO2 nanoparticle recoveries of above 90% and no increase in particle size due to sample preparation was observed. Finally, the sample preparation methods were applied to two commercial sunscreen samples revealing the existence of TiO2-NP < 100 nm. Conclusively, the surfactant assisted particle extraction method can provide valid data for TiO2-NPs in sunscreen and possibly for cosmetic samples of similar matrix.

    • A Large-Scale 3D Study on Transport of Humic Acid-Coated Goethite Nanoparticles for Aquifer Remediation

      Milica Velimirovic, Carlo Bianco, Natalia Ferrantello, Tiziana Tosco, Alessandro Casasso, Rajandrea Sethi, Doris Schmid, Stephan Wagner, Kumiko Miyajima, Norbert Klaas, Rainer U. Meckenstock, Frank von der Kammer, Bert Engelen, Thilo Hofmann
      2020 - Water, 12: 1207

      Abstract: 

      Humic acid-coated goethite nanoparticles (HA-GoeNPs) have been recently proposed as an effective reagent for the in situ nanoremediation of contaminated aquifers. However, the effective dosage of these particles has been studied only at laboratory scale to date. This study investigates the possibility of using HA-GoeNPs in remediation of real field sites by mimicking the injection and transport of HA-GoeNPs under realistic conditions. To this purpose, a three-dimensional (3D) transport experiment was conducted in a large-scale container representing a heterogeneous unconfined aquifer. Monitoring data, including particle size distribution, total iron (Fetot) content and turbidity measurements, revealed a good subsurface mobility of the HA-GoeNP suspension, especially within the higher permeability zones. A radius of influence of 2 m was achieved, proving that HA-GoeNPs delivery is feasible for aquifer restoration. A flow and transport model of the container was built using the numerical code Micro and Nanoparticle transport Model in 3D geometries (MNM3D) to predict the particle behavior during the experiment. The agreement between modeling and experimental results validated the capability of the model to reproduce the HA-GoeNP transport in a 3D heterogeneous aquifer. Such result confirms MNM3D as a valuable tool to support the design of field-scale applications of goethite-based nanoremediation.

    • Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets

      Nicholas K. Geitner, Christine Ogilvie Hendren, Geert Cornelis, Ralf Kaegi, Jamie R. Lead, Gregory V. Lowry, Iseult Lynch, Bernd Nowack, Elijah Petersen, Emily Bernhardt, Scott Brown, Wei Chen, Camille de Garidel-Thoron, Jaydee Hanson, Stacey Harper, Kim Jones, Frank von der Kammer, Alan Kennedy, Justin Kidd, Cole Matson, Chris D. Metcalfe, Joel Pedersen, Willie J. G. M. Peijnenburg, Joris T. K. Quik, Sónia M. Rodrigues, Jerome Rose, Phil Sayre, Marie Simonin, Claus Svendsen, Robert Tanguay, Nathalie Tefenkji, Tom van Teunenbroek, Gregory Thies, Yuan Tian, Jacelyn Rice, Amalia Turner, Jie Liu, Jason Unrine, Marina Vance, Jason C. White, Mark R. Wiesner
      2020 - Environmental Science: Nano, 7: 13-36

      Abstract: 

      The chemical composition and properties of environmental media determine nanomaterial (NM) transport, fate, biouptake, and organism response. To compare and interpret experimental data, it is essential that sufficient context be provided for describing the physical and chemical characteristics of the setting in which a nanomaterial may be present. While the nanomaterial environmental, health and safety (NanoEHS) field has begun harmonization to allow data comparison and re-use (e.g. using standardized materials, defining a minimum set of required material characterizations), there is limited guidance for standardizing test media. Since most of the NM properties driving environmental behaviour and toxicity are medium-dependent, harmonization of media is critical. A workshop in March 2016 at Duke University identified five categories of test media: aquatic testing media, soil and sediment testing media, biological testing media, engineered systems testing media and product matrix testing media. For each category of test media, a minimum set of medium characteristics to report in all NM tests is recommended. Definitions and detail level of the recommendations for specific standardized media vary across these media categories. This reflects the variation in the maturity of their use as a test medium and associated measurement techniques, variation in utility and relevance of standardizing medium properties, ability to simplify standardizing reporting requirements, and in the availability of established standard reference media. Adoption of these media harmonization recommendations will facilitate the generation of integrated comparable datasets on NM fate and effects. This will in turn allow testing of the predictive utility of functional assay measurements on NMs in relevant media, support investigation of first principles approaches to understand behavioral mechanisms, and support categorization strategies to guide research, commercial development, and policy.

    • Strategies for determining heteroaggregation attachment efficiencies of engineered nanoparticles in aquatic environments

      Antonia Praetorius, Elena Badetti, Andrea Brunelli, Arnaud Clavier, Julián Alberto Gallego-Urrea, Andreas Gondikas, Gaul T, Thilo Hofmann, Aiga Mackevica, Antonio Marcomini, Willie Peijnenburg, Joris T. K. Quik, Marianne Seijo, Serge Stoll, Nathalie Tepe, Helene Walch, Frank von der Kammer
      2020 - Environmental Science: Nano, 7: 351–367

      Abstract: 

      Heteroaggregation of engineered nanoparticles (ENPs) with suspended particulate matter (SPM) ubiquitous in natural waters often dominates the transport behaviour and overall fate of ENPs in aquatic environments. In order to provide meaningful exposure predictions and support risk assessment for ENPs, environmental fate and transport models require quantitative information about this process, typically in the form of the so-called attachment efficiency for heteroaggregation αhetero. The inherent complexity of heteroaggregation—encompassing at least two different particle populations, various aggregation pathways and several possible attachment efficiencies (α values)—makes its theoretical and experimental determination challenging. In this frontier review we assess the current state of knowledge on heteroaggregation of ENPs with a focus on natural surface waters. A theoretical analysis presents relevant equations, outlines the possible aggregation pathways and highlights different types of α. In a second part, experimental approaches to study heteroaggregation and derive α values are reviewed and three possible strategies are identified: i) monitoring changes in size, ii) monitoring number or mass distribution and iii) studying indirect effects, such as sedimentation. It becomes apparent that the complexity of heteroaggregation creates various challenges and no single best method for its assessment has been developed yet. Nevertheless, many promising strategies have been identified and meaningful data can be derived from carefully designed experiments when accounting for the different concurrent aggregation pathways and clearly stating the type of α reported. For future method development a closer connection between experiments and models is encouraged.

    • The importance of aromaticity to describe the interactions of organic matter with carbonaceous materials depends on molecular weight and sorbent geometry

      Stephanie Castan, Gabriel Sigmund, Thorsten Hüffer, Nathalie Tepe, Frank von der Kammer, Benny Chefetz, Thilo Hofmann
      2020 - Environmental Science.: Processes & Impacts, 22: 1888-1897

      Abstract: 

      Dissolved organic matter (DOM) is ubiquitous in aquatic environments where it interacts with a variety of particles including carbonaceous materials (CMs). The complexity of both DOM and the CMs makes DOM–CM interactions difficult to predict. In this study we have identified the preferential sorption of specific DOM fractions as being dependent on their aromaticity and molecular weight, as well as on the surface properties of the CMs. This was achieved by conducting sorption batch experiments with three types of DOM (humic acid, Suwannee River natural organic matter, and a compost extract) and three types of CMs (graphite, carbon nanotubes, and biochar) with different geometries and surface complexities. The non-adsorbed DOM fraction was analyzed by size exclusion chromatography and preferentially sorbed molecular weight fractions were analyzed by UV/vis and fluorescence spectroscopy. All three sorbent types were found to preferentially sorb aromatic DOM fractions, but DOM fractionation depended on the particular combination of sorbent and sorbate characteristics. Single-walled carbon nanotubes only sorbed the smaller molecular weight fractions (<1 kDa). The sorption of smaller DOM fractions was not accompanied by a preference for less aromatic compounds, contrary to what was suggested in previous studies. While graphite preferentially sorbed the most aromatic DOM fraction (1–3 kDa), the structural heterogeneity of biochar resulted in reduced selectivity, sorbing all DOM > 1 kDa. The results explain the lack of correlation found in previous studies between the amount of aromatic carbon in a bulk DOM and its sorption coefficient. DOM sorption by CMs was generally controlled by DOM aromaticity but complex sorbent surfaces with high porosity, curvatures and functional groups strongly reduced the importance of aromaticity.

    • Quantification and Characterization of Nanoparticulate Zinc in an Urban Watershed

      Shaun Bevers, Manuel David Montano, Laya Rybicki, Thilo Hofmann, Frank von der Kammer, James F. Ranville
      2020 - Frontiers in Environmental Science, 8: 84

      Abstract: 

      The recent expansion in the use of nanomaterials in consumer and industrial applications has led to a growing concern over their behavior, fate, and impacts in environmental systems. However, engineered nanoparticles comprise only a small fraction of the total nanoparticle mass in aquatic systems. Human activities, particularly in urban watersheds, are increasing the population of incidental nanoparticles and are likely  altering the cycling of more abundant natural nanoparticles. Accurate detection, quantification, characterization, and tracking of these different populations is important for assessing both the ecological risks of anthropogenic particles, and their impact on environmental health. The urban portion of the South Platte watershed in Denver, Colorado (United States) was sampled for zinc to identify and quantify different nanomaterial sources. Single particle ICP-QMS was employed, to provide single elemental (Zn) signals arising from particle detection events. Coupling spICP-QMS to sample pre-fractionation (sedimentation, filtration) provided some insights into Zn association with nanoparticulate, colloidal, and suspended sediment phases. Single particle ICP-TOFMS (spICP-TOFMS) provided quantification across a large atomic mass range, yielding an even more detailed characterization (elemental ratios) on a particle-by-particle basis, providing some delineation of multiple sources of particles. Across the watershed, on average, 21% of zinc mass was present as zinc-only particles with a rather uniform mean size of 40.2 nm. Zinc that was detected with one or more other elements, primarily Al, Fe, and Si, is likely to be present as heteroagglomerates or within mineral colloids. Although spICP-TOFMS provides a substantial amount of information, it is still in its early stages as an analytical technique and currently lacks the requisite sensitivity to study the smallest of nanoparticles. As this technique continues to develop, it is anticipated that this methodology can be broadly applied to study sources, behavior and effects of a disparate variety of nanoparticles from both geogenic and anthropogenic origins.

    • Wood-based activated biochar to eliminate organic micropollutants from biologically treated wastewater

      Nikolas Hagemann, Hans-Peter Schmidt, Ralf Kaegi, Mark Boehler, Gabriel Sigmund, Andreas Maccagnan, Christa S. McArdell, Thomas D. Bucheli
      2020 - Science of The Total Environment, 730: 138417

      Abstract: 

      Implementing advanced wastewater treatment (WWT) to eliminate organic micropollutants (OMPs) is a necessary step to protect vulnerable freshwater ecosystems and water resources. To this end, sorption of OMP by activated carbon (AC) is one viable technology among others. However, conventional AC production based on fossil precursor materials causes environmental pollution, including considerable emissions of greenhouse gases. In this study, we produced activated biochar (AB) from wood and woody residues by physical activation and evaluated their capability to eliminate OMPs in treated wastewater. Activated biochar produced under optimized conditions sorbed 15 model OMPs, of which most were dissociated at circumneutral pH, to the same or higher extent than commercial AC used as a reference. While wood quality played a minor role, the dosage of the activation agent was the main parameter controlling the capacity of ABs to eliminate OMP. Our results highlight the possibility for local production of AB from local wood or woody residues as a strategy to improve WWT avoiding negative side effects of conventional AC production.

    Book chapters and other publications

    1 Publication found
    • Comment on Predicting Aqueous Adsorption of Organic Compounds onto Biochars, Carbon Nanotubes, Granular Activated Carbons, And Resins with Machine Learning

      Gabriel Sigmund, Mehdi Gharasoo, Thorsten Hüffer, Thilo Hofmann
      2020 - Environmental Science & Technology, A-B
    Word Document