Metamenu

Publications

The fulltext of publications might not be freely accessible but require subscription. Please contact the authors to request reprints.

Publications in peer reviewed journals

1 Publication found
  • Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria).

    Assié A, Leisch N, Meier DV, Gruber-Vodicka H, Tegetmeyer HE, Meyerdierks A, Kleiner M, Hinzke T, Joye S, Saxton M, Dubilier N, Petersen JM
    2020 - ISME J, 1: 104-122

    Abstract: 

    Most autotrophs use the Calvin-Benson-Bassham (CBB) cycle for carbon fixation. In contrast, all currently described autotrophs from the Campylobacterota (previously Epsilonproteobacteria) use the reductive tricarboxylic acid cycle (rTCA) instead. We discovered campylobacterotal epibionts ("Candidatus Thiobarba") of deep-sea mussels that have acquired a complete CBB cycle and may have lost most key genes of the rTCA cycle. Intriguingly, the phylogenies of campylobacterotal CBB cycle genes suggest they were acquired in multiple transfers from Gammaproteobacteria closely related to sulfur-oxidizing endosymbionts associated with the mussels, as well as from Betaproteobacteria. We hypothesize that "Ca. Thiobarba" switched from the rTCA cycle to a fully functional CBB cycle during its evolution, by acquiring genes from multiple sources, including co-occurring symbionts. We also found key CBB cycle genes in free-living Campylobacterota, suggesting that the CBB cycle may be more widespread in this phylum than previously known. Metatranscriptomics and metaproteomics confirmed high expression of CBB cycle genes in mussel-associated "Ca. Thiobarba". Direct stable isotope fingerprinting showed that "Ca. Thiobarba" has typical CBB signatures, suggesting that it uses this cycle for carbon fixation. Our discovery calls into question current assumptions about the distribution of carbon fixation pathways in microbial lineages, and the interpretation of stable isotope measurements in the environment.

Book chapters and other publications

1 Publication found
  • Thinking outside the Chlamydia box

    A Taylor-Brown, T Halter, A Polkinghorne, M Horn
    2020 - 429-458. in Chlamydia Biology. (M Tan, JH Hegemann, C Sütterlin). Caister Academic Press

    Abstract: 

    Chlamydiae have long been studied exclusively in the context of disease. Yet, accumulating evidence over nearly three decades shows that chlamydiae are ubiquitous in the environment, thriving as symbionts of unicellular eukaryotes such as amoeba and infecting a broad range of animal hosts. These chlamydiae share the characteristic chlamydial developmental cycle and other chlamydial hallmarks. Their discovery fundamentally changed our perspective on chlamydial diversity. Instead of a single genus, Chlamydia, including closely related pathogens, the chlamydiae comprise hundreds of families and genera. Investigating isolates and non-cultured representatives provided insights into features that are in common with or divergent from known Chlamydia species, and suggested that some of these chlamydiae may also be considered pathogens. Importantly, these studies have contributed to a better understanding of the biology of all chlamydiae, and they provide a framework for investigating the evolution of the chlamydial intracellular lifestyle and pathogenicity.

Word Document