Metamenu

Publications

The fulltext of publications might not be freely accessible but require subscription. Please contact the authors to request reprints.

Publications in peer reviewed journals

13 Publications found
  • Biomonitoring of Dietary Mycotoxin Exposure and Associated Impact on the Gut Microbiome in Nigerian Infants

    Ayeni KI, Seki D, Pjevac P, Hausmann B, Krausová M, Braun D, Wisgrill L, Berry D, Warth B, Ezekiel CN
    2024 - Environmental Science & Technology, in press

    Abstract: 

    Mycotoxins are toxic chemicals that adversely affect human health. Here, we assessed the influence of mycotoxin exposure on the longitudinal development of early life intestinal microbiota of Nigerian neonates and infants (NIs). Human biomonitoring assays based on liquid chromatography tandem mass spectrometry were applied to quantify mycotoxins in breast milk (n = 68) consumed by the NIs, their stool (n = 82), and urine samples (n = 15), which were collected longitudinally from month 1–18 postdelivery. Microbial community composition was characterized by 16S rRNA gene amplicon sequencing of stool samples and was correlated to mycotoxin exposure patterns. Fumonisin B1 (FB1), FB2, and alternariol monomethyl ether (AME) were frequently quantified in stool samples between months 6 and 18. Aflatoxin M1 (AFM1), AME, and citrinin were quantified in breast milk samples at low concentrations. AFM1, FB1, and ochratoxin A were quantified in urine samples at relatively high concentrations. Klebsiella and Escherichia/Shigella were dominant in very early life stool samples (month 1), whereas Bifidobacterium was dominant between months 3 and 6. The total mycotoxin levels in stool were significantly associated with NIs’ gut microbiome composition (PERMANOVA, p < 0.05). However, no significant correlation was observed between specific microbiota and the detection of certain mycotoxins. Albeit a small cohort, this study demonstrates that mycotoxins may influence early life gut microbiome composition.

  • Tire Materials Disturb Transformations of Nitrogen Compounds and Affect the Structure of Biomass in Aerobic Granular Sludge Reactors

    Piotr Jachimowicz, Ruoting Peng, Thorsten Hüffer, Thilo Hofmann, Agnieszka Cydzik-Kwiatkowska
    2024 - Journal of Hazardous Materials, 465: 133223

    Abstract: 

    Tire materials (TMs) present a notable hazard due to their potential to release harmful chemicals and microplastics into the environment. They can infiltrate wastewater treatment plants, where their effects remain inadequately understood, raising concerns regarding their influence on treatment procedures. Thus, this study investigated the impact of TMs in wastewater (10, 25, 50 mg/L) on wastewater treatment efficiency, biomass morphology, and microbial composition in aerobic granular sludge (AGS) reactors. TM dosage negatively correlated with nitrification and denitrification efficiencies, reducing overall nitrogen removal, but did not affect the efficiency of chemical-oxygen-demand removal. The presence of TMs increased the diameter of the granules due to TM incorporation into the biomass. The most frequently leached additives from TMs were N-(1,3-dimethylbutyl)-N′-phenyl-1,4-phenylenediamine, benzothiazole (BTH), and 2-hydroxybenzothiazole. In the treated wastewater, only BTH and aniline were detected in higher concentrations, which indicates that tire additives were biodegraded by AGS. The microbial community within the AGS adapted to TMs and their chemicals, highlighting the potential for efficient degradation of tire additives by bacteria belonging to the genera Rubrivivax, Ferruginibacter, and Xanthomonas. Additionally, our research underscores AGS's ability to incorporate TMs into biomass and effectively biodegrade tire additives, offering a promising solution for addressing environmental concerns related to TMs.

  • An integrated approach to testing and assessment (IATA) to support grouping and read-across of nanomaterials in aquatic systems

    Richard K. Cross, Dave Spurgeon, Claus Svendsen, Elma Lahive, Simon Little, Frank von der Kammer, Frédéric Loosli, Marianne Matzke, Teresa F. Fernandes, Vicki Stone, Willie J.G.M. Peijnenburg, Eric A.J. Bleeker
    2024 - Nano Today, 54: 102065

    Abstract: 

    Even small changes in physicochemical properties of nanoforms (NFs), can drive differences in their environmental fate and hazard. The large number of new materials being developed means it will not be feasible to test and characterise the fate, behaviour and (eco)toxicity of each individual NF. This is further amplified by transformations of NFs over their lifecycle, changing the processes governing their risk. A common complexity arises from dissolution, where the combined toxicity of the exposure arises from both the solutes and any remaining particles contribution to the overall toxicity of the exposure. For efficient and effective risk assessment, it is the most relevant form of the NF for a given exposure that should be targeted for testing and assessment. In aquatic systems, functional fate processes (including dissolution, dispersion stability and chemical and biological transformations) determine the NF’s exposure relevant form. Whilst transformations in the environment alter the initial properties of an NF, different NFs may follow a shared functional fate pathway and ultimately present a similar fate and hazard profile in the environment. Therefore, these processes may be used to scientifically justify grouping NFs and read-across for specific endpoints from data rich NF(s) to verified members of the group that have not been tested yet. Integrated Approaches to Testing and Assessment (IATA) have been used in other regulatory contexts to support the collection and integration of relevant existing information as well as the targeted generation of new data to support grouping and read-across. Here, a new IATA is presented consisting of decision nodes focused on dissolution, dispersion stability, chemical transformations and the relative contribution to toxicity of the particle and dissolved component of the overall exposure. The IATA focuses on the fate of NFs in aquatic systems outside of the body, but it can be considered a template for future assessment of in vivo kinetics, which will require further development. Guidance on tiered testing approaches and thresholds for grouping within each decision node are critically discussed. Worked examples for ecotoxicity of metal oxide NFs in aqueous systems (in microbial communities isolated from soils and for lettuce plants in hydroponic systems) demonstrate successful identification of the exposure relevant form of the NF in these case studies and allows for different grouping of NFs through application of the IATA.

  • Hydrolysis of Antimicrobial Peptides by Extracellular Peptidases in Wastewater

    Natalie Wichmann, Richard Gruseck, Michael Zumstein
    2024 - Environ. Sci. Technol., 1: 717–726

    Abstract: 

    Several antimicrobial peptides (AMPs) are emerging as promising novel antibiotics. When released into wastewater streams after use, AMPs might be hydrolyzed and inactivated by wastewater peptidases─resulting in a reduced release of active antimicrobials into wastewater-receiving environments. A key step towards a better understanding of the fate of AMPs in wastewater systems is to investigate the activity and specificity of wastewater peptidases. Here, we quantified peptidase activity in extracellular extracts from different stages throughout the wastewater treatment process. For all four tested municipal wastewater treatment plants, we detected highest activity in raw wastewater. Complementarily, we assessed the potential of enzymes in raw wastewater extracts to biotransform 10 selected AMPs. We found large variations in the susceptibility of AMPs to enzymatic transformation, indicating substantial substrate specificity of extracted enzymes. To obtain insights into peptidase specificities, we searched for hydrolysis products of rapidly biotransformed AMPs and quantified selected products using synthetic standards. We found that hydrolysis occurred at specific sites and that these sites were remarkably conserved across the four tested wastewaters. Together, these findings provide insights into the fate of AMPs in wastewater systems and can inform the selection and design of peptide-based antibiotics that are hydrolyzable by wastewater peptidases.

  • Influence of plastic shape on interim fragmentation of compostable materials during composting

    Patrizia Pfohl, Markus Rueckel, Lars Meyer, Glauco Battagliarin, Andreas Künkel, Thorsten Hüffer, Michael Zumstein, Thilo Hofmann, Wendel Wohlleben
    2024 - Microplastics and Nanoplastics, 4: in press

    Abstract: 

    Common experience with rotting wooden buildings demonstrates that fragmentation is a necessary natural process during biodegradation. In analogy, the loss of structural integrity of biodegradable plastics during biodegradation produces interim microplastic fragments. It is currently not known which parameters govern fragmentation kinetics: chemical structure, physical shape, and composite layers, or composting conditions may all be relevant. Here we investigated the influence of physical shape on the fragmentation of a polyester blend during laboratory tests simulating industrial composting. Methods previously validated on micronized granules as model shape were applied to shapes that better represent consumer products, such as micronized thin films and shredded plastic-coated paper cups. The peak interim number of detected fragments, which are between 3 and 2000 µm, ranked highest for micronized films, lower for micronized plastic granules, and even lower for coated paper cups. The layered structure of polyester on cellulose may thus have stabilized the biodegrading polyester compound against fragmentation. For thin films, fragment counts dissipated with halftime of 2.5 days, and less than 10–8% of the initially added polyester mass was detected in fragments between 3 and 25 µm at the last sampling time point. The physical shape and multilayer structure of the polymer-containing product were found to be decisive for fragmentation kinetics, indicating that tests on micronized polymer granules might not be representative of the release mechanism of fragments from consumer products containing plastic coatings.

  • Viral potential to modulate microbial methane metabolism varies by habitat

    Zhong ZP, Du J, Köstlbacher S, Pjevac P, Orlić S, Sullivan MB
    2024 - Nature communications, in press

    Abstract: 

    Methane is a potent greenhouse gas contributing to global warming. Microorganisms largely drive the biogeochemical cycling of methane, yet little is known about viral contributions to methane metabolism (MM). We analyzed 982 publicly available metagenomes from host-associated and environmental habitats containing microbial MM genes, expanding the known MM auxiliary metabolic genes (AMGs) from three to 24, including seven genes exclusive to MM pathways. These AMGs are recovered on 911 viral contigs predicted to infect 14 prokaryotic phyla including Halobacteriota, Methanobacteriota, and Thermoproteota. Of those 24, most were encoded by viruses from rumen (16/24), with substantially fewer by viruses from environmental habitats (0–7/24). To search for additional MM AMGs from an environmental habitat, we generate metagenomes from methane-rich sediments in Vrana Lake, Croatia. Therein, we find diverse viral communities, with most viruses predicted to infect methanogens and methanotrophs and some encoding 13 AMGs that can modulate host metabolisms. However, none of these AMGs directly participate in MM pathways. Together these findings suggest that the extent to which viruses use AMGs to modulate host metabolic processes (e.g., MM) varies depending on the ecological properties of the habitat in which they dwell and is not always predictable by habitat biogeochemical properties.

  • The maternal microbiome in pregnancy, delivery, and early-stage development of neonatal microbiome after cesarean section: A prospective longitudinal study

    Foessleitner P, Pjevac P, Granser S, Wisgrill L, Pummer L, Eckel F, Seki D, Berry D, Hausmann B, Farr A
    2024 - AOGS, in press

    Abstract: 

    Introduction

    Changes within the maternal microbiome during the last trimester of pregnancy and the determinants of the subsequent neonatal microbiome establishment after delivery by elective cesarean section are described.

    Material and methods

    Maternal vaginal and rectal microbiome samples were collected in the last trimester and before cesarean section; intrauterine cavity, placenta, neonatal buccal mucosa, skin, and meconium samples were obtained at birth; neonatal sample collection was repeated 2–3 days postnatally. Microbial community composition was analyzed by 16S rRNA gene amplicon sequencing. Relative abundance measurements of amplicon sequencing variants and sum counts at higher taxonomic levels were compared to test for significant overlap or differences in microbial community compositions. ClinicalTrials.gov ID: NCT04489056.

    Results

    A total of 30 mothers and their neonates were included with available microbiome samples for all maternal, intrauterine cavity and placenta samples, as well as for 18 of 30 neonates. The composition of maternal vaginal and rectal microbiomes during the last trimester of healthy pregnancies did not significantly change (permutational multivariate analysis of variance [PERMANOVA], p > 0.05). No robust microbial signature was detected in the intrauterine cavity, placenta, neonatal buccal mucosa, skin swabs, or meconium samples collected at birth. After birth, the neonatal microbiome was rapidly established, and significantly different microbial communities were detectable 2–3 days postnatally in neonate buccal mucosa and stool samples (PERMANOVA, p < 0.01).

    Conclusions

    Maternal vaginal and rectal microbiomes in healthy pregnancies remain stable during the third trimester. No microbial colonization of the neonate was observed before birth in healthy pregnancies. Neonatal microbiomes in infants delivered by cesarean section displayed a taxonomic composition distinct from maternal vaginal and rectal microbiomes at birth, indicating that postnatal exposure to the extrauterine environment is the driving source of initial neonatal microbiome development in this cohort.

  • Reevaluation and novel insights into amino sugar and neutral sugar necromass biomarkers in archaea, bacteria, fungi, and plants

    Salas E, Gorfer M, Bandian D, Eichorst SA, Schmidt H, Horak J, Rittmann SKMR, Schleper C, Reischl B, Pribasnig T, Jansa J, Kaiser C, Wanek W
    2024 - Sci. Total Environ, 906: 167463

    Abstract: 

    Soil microbial necromass is an important contributor to soil organic matter (>50%) and it is largely composed of microbial residues. In soils, fragmented cell wall residues are mostly found in their polysaccharide forms of fungal chitin and bacterial peptidoglycan. Microbial necromass biomarkers, particularly amino sugars (AS) such as glucosamine (GlcN) and muramic acid (MurA) have been used to trace fungal and bacterial residues in soils, and to distinguish carbon (C) found in microbial residues from non-microbial organic C. Neutral sugars (NS), particularly the hexose/pentose ratio, have also been proposed as tracers of plant polysaccharides in soils. In our study, we extended the range of biomarkers to include AS and NS compounds in the biomass of 120 species belonging to archaea, bacteria, fungi, or plants. GlcN was the most common AS found in all taxa, contributing 42–91% to total AS content, while glucose was the most common NS found, contributing 56–79% to total NS. We identified talosaminuronic acid, found in archaeal pseudopeptidoglycan, as a new potential biomarker specific for Euryarchaeota. We compared the variability of these compounds between the different taxonomic groups using multivariate approaches, such as non-metric multidimensional scaling (NMDS) and partial least squares discriminant analysis (PLS-DA) and statistically evaluated their biomarker potential via indicator species analysis. Both NMDS and PLS-DA showcased the variability in the AS and NS contents between the different taxonomic groups, highlighting their potential as necromass residue biomarkers and allowing their extension from separating bacterial and fungal necromass to separating microbes from plants. Finally, we estimated new conversion factors where fungal GlcN is converted to fungal C by multiplying by 10 and MurA is converted to bacterial C by multiplying by 54. Conversion factors for talosaminuronic acid and galactosamine are also proposed to allow estimation of archaeal or all-microbial necromass residue C, respectively.

  • A versatile test system to determine nanomaterial heteroagglomeration attachment efficiency

    Helene Walch, Nada Bašić, Antonia Praetorius, Frank von der Kammer, Thilo Hofmann
    2024 - Environmental Science: Nano, 11: 588-600

    Abstract: 

    Engineered and incidental nanomaterials are emerging contaminants of environmental concern. In aquatic systems, their transport, fate, and bioavailability strongly depend on heteroagglomeration with natural suspended particulate matter (SPM). Since particulate contaminants underlie different mechanisms than dissolved contaminants, harmonized, particle-specific test systems and protocols are needed for environmental risk assessment and for the comparability of environmental fate studies. The heteroagglomeration attachment efficiency (α_het) can parametrize heteroagglomeration in fate models which inform exposure assessment. It describes the attachment probability upon nanomaterial-SPM collision and reflects the physicochemical affinity between their surfaces. This work introduces a new versatile test system to determine α_het under environmentally relevant conditions. The test matrix combines model SPM analogs and an adjustable model hydrochemistry, both designed to represent the process-relevant characteristics of natural freshwater systems, while being standardizable and reproducible. We developed a stirred-batch method that addresses shortcomings of existing strategies for α_het determination and conducted heteroagglomeration experiments with CeO2 (<25 nm) as a model nanomaterial. Single-particle ICP-MS allowed working at environmentally relevant concentrations and determination of α_het values by following the decrease of non-reacted nanomaterial over time. The α_het values received for the model freshwater test matrix were evaluated against a natural river-water sample. Almost identical α_het values show that the model test system adequately reflects the natural system, and the experimental setup proved to be robust and in line with the theoretical concept for α_het determination. Combinations of natural SPM in model water and model SPM in natural water allowed further insight into their respective impacts. The α_het values determined for nano-CeO2 in the natural river water sample (0.0044-0.0051) translate to a travel distance of 143-373 km downstream until 50% is heteroagglomerated, assuming an average flow velocity of 5 km h-1 and an SPM concentration of 20-45 mg L-1. These half-lives illustrate the importance of heteroagglomeration kinetics.

  • Impact of Heavy Metals (Cu, Fe, Pb, Zn) on Carbon and Nitrogen Uptake of the Diatom-Bearing Benthic Foraminifera Heterostegina Depressa

    Mario Bubl, Petra Heinz, Wolfgang Wanek, Michael Schagerl, Thilo Hofmann, Michael Lintner
    2024 - Heliyon, 10: in press

    Abstract: 

    Foraminifera are protists primarily living in benthic marine and estuarine environments. We studied uptake of inorganic carbon (C) and nitrogen (N) of the photosymbiont-bearing benthic coral reef foraminifera Heterostegina depressa in the presence of heavy metals.
    Incubation experiments were accomplished with artificial seawater enriched with copper, iron, lead and zinc at two different concentration levels (10 and 100 fold enriched in contrast to the usual culture medium). Additionally, isotopically labelled 13C-sodium bicarbonate and 15N-ammonium chloride were added to trace their assimilation over time (1 d, 3 d, 5 d, 7 d). Pulse-amplified modulated fluorescence measurements were performed to measure the potential impacts of heavy metals on chlorophyll fluorescence of the photosymbiont. Increased levels of copper (430.5 μg Cu/l) exhibited the greatest toxicity, while for low levels no effect on the overall metabolism of the foraminifera and the fluorescence activity of the photosymbiont could be detected. Iron (III) increased the symbiont activity, independent of concentration applied (44.5 and 513.3 μg Fe/l), which indicates Fe-limitation of the algal symbiont. Lead enrichment showed no detectable effect even at high concentration. Low concentrations of zinc (35.1 μg Zn/l) promoted the metabolism of the foraminifera, while high concentrations (598.4 μg Zn/l) were toxic. At low levels, two metals (Fe and Zn) promoted symbiont activity, at high levels, iron still boosted photosynthesis, but Zn and Cu had a negative impact on the obligatory photosynthetic symbionts.
  • The efficacy of Pb, As(V) and Sb(III ) removal by biochar is determined by solution chemistry

    Sampriti Chaudhuri, Gabriel Sigmund, Naresh Kumar, Thorsten Hüffer, Andreas Mautner, Thilo Hofmann
    2024 - Environmental Science: Water Research & Technology, in press

    Abstract: 

    Biochars (BC) are cost-effective and sustainable sorbents to clean up waters polluted with metal(loid)s. Understanding the influence of water chemistry is critical in identifying processes that limit metal(loid) removal. To address this, we investigated the removal of lead [Pb], arsenate [As(V)], and antimonite [Sb(III)] using BC in the presence of various solution constituents. A design of experiments approach was used to investigate sorption for each metal(loid)-BC setup (Pb with a straw BC, As(V) with charred wood-dolomite and Sb(III) with a steam-activated wood BC) with twenty-five different background solutions varying in calcium (Ca), natural organic matter (NOM), phosphorus (P), and iron [Fe(III)] content. Background solution composition affected removal of Pb (29 to 100%) more strongly than that of As(V) (37 to 92%) and Sb(III) (20 to 70%), with the selected BC at the metal(loid) concentrations studied. Pb removal was associated with Fe(III)–NOM–Ca organo-mineral phases for solutions containing Fe(III), NOM and Ca. As(V) sorption was enhanced by Ca due to cation-bridging and reducing the competition for sorption sites by NOM and P in high NOM and/or P containing solutions. Sb(III) sorption was hindered by oxidation to Sb(V) through redox active moieties in the BC in all solutions. Sb(III) removal decreased in the presence of high Fe(III), because Fe(III)/Fe(III)–NOM phases blocked accessibility to sorption sites in the highly porous BC, and/or due to enhanced oxidation of Sb(III) to the more mobile (but less toxic) Sb(V). Ideally, the design of BC sorbents for the removal of metal(loid)s from contaminated waters should a priori consider complex solution compositions.

  • Global abundance patterns, diversity, and ecology of Patescibacteria in wastewater treatment plants.

    Hu H, Kristensen JM, Herbold CW, Pjevac P, Kitzinger K, Hausmann B, Dueholm MKD, Nielsen PH, Wagner M
    2024 - Microbiome, 1: 55
    Patescibacteria co-occurrence network

    Abstract: 

    Microorganisms are responsible for nutrient removal and resource recovery in wastewater treatment plants (WWTPs), and their diversity is often studied by 16S rRNA gene amplicon sequencing. However, this approach underestimates the abundance and diversity of Patescibacteria due to the low coverage of commonly used PCR primers for this highly divergent bacterial phylum. Therefore, our current understanding of the global diversity, distribution, and ecological role of Patescibacteria in WWTPs is very incomplete. This is particularly relevant as Patescibacteria are considered to be associated with microbial host cells and can therefore influence the abundance and temporal variability of other microbial groups that are important for WWTP functioning.
    Here, we evaluated the in silico coverage of widely used 16S rRNA gene-targeted primer pairs and redesigned a primer pair targeting the V4 region of bacterial and archaeal 16S rRNA genes to expand its coverage for Patescibacteria. We then experimentally evaluated and compared the performance of the original and modified V4-targeted primers on 565 WWTP samples from the MiDAS global sample collection. Using the modified primer pair, the percentage of ASVs classified as Patescibacteria increased from 5.9 to 23.8%, and the number of detected patescibacterial genera increased from 560 to 1576, while the detected diversity of the remaining microbial community remained similar. Due to this significantly improved coverage of Patescibacteria, we identified 23 core genera of Patescibacteria in WWTPs and described the global distribution pattern of these unusual microbes in these systems. Finally, correlation network analysis revealed potential host organisms that might be associated with Patescibacteria in WWTPs. Interestingly, strong indications were found for an association between Patescibacteria of the Saccharimonadia and globally abundant polyphosphate-accumulating organisms of the genus Ca. Phosphoribacter.
    Our study (i) provides an improved 16S rRNA gene V4 region-targeted amplicon primer pair inclusive of Patescibacteria with little impact on the detection of other taxa, (ii) reveals the diversity and distribution patterns of Patescibacteria in WWTPs on a global scale, and (iii) provides new insights into the ecological role and potential hosts of Patescibacteria in WWTPs. Video Abstract.

  • Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses

    Kop LFM, Koch H, Jetten MSM, Daims H, Lücker S
    2024 - ISME Commun., 4: ycad017

    Abstract: 

    The most abundant known nitrite-oxidizing bacteria in the marine water column belong to the phylum Nitrospinota. Despite their importance in marine nitrogen cycling and primary production, there are only few cultured representatives that all belong to the class Nitrospinia. Moreover, although Nitrospinota were traditionally thought to be restricted to marine environments, metagenome-assembled genomes have also been recovered from groundwater. Over the recent years, metagenomic sequencing has led to the discovery of several novel classes of Nitrospinota (UBA9942, UBA7883, 2-12-FULL-45-22, JACRGO01, JADGAW01), which remain uncultivated and have not been analyzed in detail. Here, we analyzed a nonredundant set of 98 Nitrospinota genomes with focus on these understudied Nitrospinota classes and compared their metabolic profiles to get insights into their potential role in biogeochemical element cycling. Based on phylogenomic analysis and average amino acid identities, the highly diverse phylum Nitrospinota could be divided into at least 33 different genera, partly with quite distinct metabolic capacities. Our analysis shows that not all Nitrospinota are nitrite oxidizers and that members of this phylum have the genomic potential to use sulfide and hydrogen for energy conservation. This study expands our knowledge of the phylogeny and potential ecophysiology of the phylum Nitrospinota and offers new avenues for the isolation and cultivation of these elusive bacteria.

Book chapters and other publications

1 Publication found
  • Polymer Biodegradability 2.0: A Holistic View on Polymer Biodegradation in Natural and Engineered Environments

    Michael Sander, Miriam Weber, Christian Lott, Michael Zumstein, Andreas Künkel, Glauco Battagliarin
    2024 - 65-110. in Advances in Polymer Science. Springer International Publishing

    Abstract: 

    Biodegradable polymers are an important part of the solution toolbox to achieve circularity in the plastic economy and overcome negative impacts of a linear plastic economy. Biodegradable polymers need to excel not only on a mechanical performance level in the application to fulfill their function during the use phase but also on a biodegradation performance level after use. The biodegradation performance is tailored to the application and the receiving environment of the polymer product after use, which can be both engineered systems (e.g., compost, anaerobic digestors, wastewater treatment plants) and natural systems (e.g., soils, freshwater, or marine environments). This chapter addresses key aspects of polymer biodegradability and biodegradation in both natural and engineered systems with the goal to advance a more holistic view on the topic and, thereby, provide guidance for all stakeholders working on developing, testing, and regulating biodegradable polymers. These aspects include definitions of biodegradability and biodegradation, elucidating polymer- and environmental factors that control the biodegradation process, a discussion of the analytical chemistry of polymer biodegradation, polymer biodegradability testing and certification, as well as a brief overview of research needs. In accordance with the diverse backgrounds of the authors of the chapter, this chapter targets all stakeholder groups from academics to industry and regulators.

Word Document