Publications

The fulltext of publications might not be freely accessible but require subscription. Please contact the authors to request reprints.

Publications in peer reviewed journals

58 Publications found
  • Astrobiology as a framework for investigating antibiotic susceptibility: a study of Halomonas hydrothermalis

    Harrison JP, Angel R, Cockell CS
    2017 - J R Soc Interface, 126: in press

    Abstract: 

    Physical and chemical boundaries for microbial multiplication on Earth are strongly influenced by interactions between environmental extremes. However, little is known about how interactions between multiple stress parameters affect the sensitivity of microorganisms to antibiotics. Here, we assessed how 12 distinct permutations of salinity, availability of an essential nutrient (iron) and atmospheric composition (aerobic or microaerobic) affect the susceptibility of a polyextremotolerant bacterium, Halomonas hydrothermalis, to ampicillin, kanamycin and ofloxacin. While salinity had a significant impact on sensitivity to all three antibiotics (as shown by turbidimetric analyses), the nature of this impact was modified by iron availability and the ambient gas composition, with differing effects observed for each compound. These two parameters were found to be of particular importance when considered in combination and, in the case of ampicillin, had a stronger combined influence on antibiotic tolerance than salinity. Our data show how investigating microbial responses to multiple extremes, which are more representative of natural habitats than single extremes, can improve our understanding of the effects of antimicrobial compounds and suggest how studies of habitability, motivated by the desire to map the limits of life, can be used to systematically assess the effectiveness of antibiotics.

  • Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events

    Mooshammer M, Hofhansl F, Frank AH, Wanek W, Hämmerle I, Leitner S, Schnecker J, Wild B, Watzka M, Keiblinger KM, Zechmeister­‐Boltenstern S, Richter A
    2017 - Science Advances, 3: 13

    Abstract: 

    Predicted changes in the intensity and frequency of climate extremes urge a better mechanistic understanding of the
    stress response of microbially mediated carbon (C) and nutrient cycling processes. We analyzed the resistance and
    resilience of microbial C, nitrogen (N), and phosphorus (P) cycling processes and microbial community composition
    in decomposing plant litter to transient, but severe, temperature disturbances, namely, freeze-thaw and heat. Disturbances
    led temporarily to a more rapid cycling of C and N but caused a down-regulation of P cycling. In contrast to the
    fast recovery of the initially stimulated C and N processes, we found a slow recovery of P mineralization rates, which
    was not accompanied by significant changes in community composition. The functional and structural responses to
    the two distinct temperature disturbances were markedly similar, suggesting that direct negative physical effects and
    costs associated with the stress response were comparable. Moreover, the stress response of extracellular enzyme
    activities, but not that of intracellular microbial processes (for example, respiration or N mineralization), was
    dependent on the nutrient content of the resource through its effect on microbial physiology and community
    composition. Our laboratory study provides novel insights into the mechanisms of microbial functional stress responses
    that can serve as a basis for field studies and, in particular, illustrates the need for a closer integration of
    microbial C-N-P interactions into climate extremes research.

  • Post photosynthetic carbon partitioning to sugar alcohols and consequences for plant growth

    Dumschott K, Richter A, Loescher W, Merchant A
    2017 - Phytochemistry, 144: 243-252

    Abstract: 

    The occurrence of sugar alcohols is ubiquitous among plants. Physiochemical properties of sugar alcohols suggest numerous primary and secondary functions in plant tissues and are often well documented. In addition to functions arising from physiochemical properties, the synthesis of sugar alcohols may have significant influence over photosynthetic, respiratory, and developmental processes owing to their function as a large sink for photosynthates. Sink strength is demonstrated by the high concentrations of sugar alcohols found in plant tissues and their ability to be readily transported. The plant scale distribution and physiochemical function of these compounds renders them strong candidates for functioning as stress metabolites. Despite this, several aspects of sugar alcohol biosynthesis and function are poorly characterised namely: 1) the quantitative characterisation of carbon flux into the sugar alcohol pool; 2) the molecular control governing sugar alcohol biosynthesis on a quantitative basis; 3) the role of sugar alcohols in plant growth and ecology; and 4) consequences of sugar alcohol synthesis for yield production and yield quality. We highlight the need to adopt new approaches to investigating sugar alcohol biosynthesis using modern technologies in gene expression, metabolic flux analysis and agronomy. Combined, these approaches will elucidate the impact of sugar alcohol biosynthesis on growth, stress tolerance, yield and yield quality.

  • Optimal metabolic regulation along resource stoichiometry gradients

    Manzoni S, Capek P, Mooshammer M, Lindahl BD, Richter A, Santruckova H
    2017 - Ecology Letters, 20: 1182-1191

    Abstract: 

    Most heterotrophic organisms feed on substrates that are poor in nutrients compared to their
    demand, leading to elemental imbalances that may constrain their growth and function. Flexible
    carbon (C)-use efficiency (CUE, C used for growth over C taken up) can represent a strategy to
    reduce elemental imbalances. Here, we argue that metabolic regulation has evolved to maximise
    the organism growth rate along gradients of nutrient availability and translated this assumption
    into an optimality model that links CUE to substrate and organism stoichiometry. The optimal
    CUE is predicted to decrease with increasing substrate C-to-nutrient ratio, and increase with
    nutrient amendment. These predictions are generally confirmed by empirical evidence from a new
    database of c. 2200 CUE estimates, lending support to the hypothesis that CUE is optimised
    across levels of organisation (microorganisms and animals), in aquatic and terrestrial systems, and
    when considering nitrogen or phosphorus as limiting nutrients.

  • A bacterial pioneer produces cellulase complexes that persist through community succession

    Kolinko S, Wu YW, Tachea F, Denzel E, Hiras J, Gabriel R, Bäcker N, Chan LJG, Eichorst SA, Frey D, Chen Q, Azadi P, Adams PD, Pray TR, Tanjore D, Petzold CJ, Gladden JM, Simmons BA, Singer SW
    2017 - Nat Microbiol, in press
  • AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment

    Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, Steinberger M, Jetten MSM, Luecker S, Wagner M, Daims H
    2017 - Front Microbiol, 8:1508
    Comammox PCR primers

    Abstract: 

    Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be catalyzed by the concerted activity of ammonia- and nitrite-oxidizing microorganisms. Only recently, complete ammonia oxidizers (‘comammox’), which oxidize ammonia to nitrate on their own, were identified in the bacterial genus Nitrospira, previously assumed to contain only canonical nitrite oxidizers. Nitrospira are widespread in nature, but for assessments of the distribution and functional importance of comammox Nitrospira in ecosystems, cultivation-independent tools to distinguish comammox from strictly nitrite oxidizing Nitrospira are required. Here we developed new PCR primer sets that specifically target the amoA genes coding for subunit A of the distinct ammonia monooxygenase of comammox Nitrospira. While existing primers capture only a fraction of the known comammox amoA diversity, the new primer sets cover as much as 95% of the comammox amoA clade A and 92% of the clade B sequences in a reference database containing 326 comammox amoA genes with sequence information at the primer binding sites. Application of the primers to 13 samples from engineered systems (a groundwater well, drinking water treatment and wastewater treatment plants) and other habitats (rice paddy and forest soils, rice rhizosphere, brackish lake sediment and freshwater biofilm) detected comammox Nitrospira in all samples and revealed a considerable diversity of comammox in most habitats. Excellent primer specificity for comammox amoA was achieved by avoiding the use of highly degenerate primer preparations and by using equimolar mixtures of oligonucleotides that match existing comammox amoA genes. Quantitative PCR with these equimolar primer mixtures was highly sensitive and specific, and enabled the efficient quantification of clade A and clade B comammox amoA gene copy numbers in environmental samples. The measured relative abundances of comammox Nitrospira, compared to canonical ammonia oxidizers, were highly variable across environments. The new comammox amoA-targeted primers enable more encompassing future studies of nitrifying microorganisms in diverse habitats. For example, they may be used to monitor the population dynamics of uncultured comammox organisms under changing environmental conditions and in response to altered treatments in engineered and agricultural ecosystems.

  • Global patterns of phosphatase activity in natural soils

    Margalef O, Sardans J, Fernández-Martínez M, Molowny-Horas R, Janssens IA, Ciais P, Richter A, Obersteiner M, Asenio D, Peñuelas J
    2017 - Scientific Reports, 7: 13

    Abstract: 

    Soil phosphatase levels strongly control the biotic pathways of phosphorus (P), an essential element for
    life, which is often limiting in terrestrial ecosystems. We investigated the influence of climatic and soil
    traits on phosphatase activity in terrestrial systems using metadata analysis from published studies.
    This is the first analysis of global measurements of phosphatase in natural soils. Our results suggest
    that organic P (Porg), rather than available P, is the most important P fraction in predicting phosphatase
    activity. Structural equation modeling using soil total nitrogen (TN), mean annual precipitation, mean
    annual temperature, thermal amplitude and total soil carbon as most available predictor variables
    explained up to 50% of the spatial variance in phosphatase activity. In this analysis, Porg could not be
    tested and among the rest of available variables, TN was the most important factor explaining the
    observed spatial gradients in phosphatase activity. On the other hand, phosphatase activity was also
    found to be associated with climatic conditions and soil type across different biomes worldwide. The
    close association among different predictors like Porg, TN and precipitation suggest that P recycling is
    driven by a broad scale pattern of ecosystem productivity capacity.

  • Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera (Ammonia tepida and Haynesina germanica)

    Wukovits J, Enge AJ, Wanek W, Watzka M, Heinz P
    2017 - Biogeosciences, 11: 2815-2829

    Abstract: 

    Benthic foraminifera are highly abundant heterotrophic protists in marine sediments, but future environmental changes will challenge the tolerance limits of intertidal species. Metabolic rates and physiological processes in foraminifera are strongly dependent on environmental temperatures. Temperature-related stress could therefore impact foraminiferal food source processing efficiency and might result in altered nutrient fluxes through the intertidal food web. In this study, we performed a laboratory feeding experiment on Ammonia tepida and Haynesina germanica, two dominant foraminiferal species of the German Wadden Sea/Friedrichskoog, to test the effect of temperature on phytodetritus retention. The specimens were fed with C-13 and N-15 labelled freeze-dried Dunaliella tertiolecta (green algae) at the start of the experiment and were incubated at 20, 25 and 30 degrees C respectively. Dual labelling was applied to observe potential temperature effects on the relation of phytodetrital carbon and nitrogen retention. Samples were taken over a period of 2 weeks. Foraminiferal cytoplasm was isotopically analysed to investigate differences in carbon and nitrogen uptake derived from the food source. Both species showed a positive response to the provided food source, but carbon uptake rates of A. tepida were 10-fold higher compared to those of H. germanica. Increased temperatures had a far stronger impact on the carbon uptake of H. germanica than on A. tepida. A distinct increase in the levels of phytodetrital-derived nitrogen (compared to more steady carbon levels) could be observed over the course of the experiment in both species. The results suggest that higher temperatures have a significant negative effect on the carbon exploitation of H. germanica. For A. tepida, higher carbon uptake rates and the enhanced tolerance range for higher temperatures could outline an advantage in warmer periods if the main food source consists of chlorophyte phytodetritus. These conditions are likely to impact nutrient fluxes in A. tepida/H. germanica associations.

  • Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests

    Liu M, Li C, Xu X, Wanek W, Jiang N, Wang H, Yang X
    2017 - Tree Physiology, in press

    Abstract: 

    Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3− (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g−1 dry weight (d.w.) root h−1, while those by tropical trees averaged 6.8 μg N g−1 d.w. root h−1. Glycine uptake rates averaged 3.1 μg N g−1 d.w. root h−1 for temperate trees and 2.4 μg N g−1 d.w. root h−1 for tropical trees. NO3− uptake was the lowest (averaging 0.8 μg N g−1 d.w. root h−1 for temperate trees and 1.2 μg N g−1 d.w. root h−1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3− uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3− or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests demonstrate similar N uptake patterns although they differ in physiology of trees and soil biogeochemical processes.

  • NanoSIMS and tissue autoradiography reveal symbiont carbon fixation and organic carbon transfer to giant ciliate host

    Volland J-M, Schintlmeister A, Zambalos H, Reipert S; Mozetič P, Espada-Hinojosa S; Turk V, Wagner M, Bright M
    2017 - ISME J., in press

    Abstract: 

    The giant colonial ciliate Zoothamnium niveum harbors a monolayer of the gammaproteobacteria Cand. Thiobios zoothamnicoli on its outer surface. Cultivation experiments revealed maximal growth and survival under steady flow of high oxygen and low sulfide concentrations. We aimed at directly demonstrating the sulfur-oxidizing, chemoautotrophic nature of the symbionts and at investigating putative carbon transfer from the symbiont to the ciliate host. We performed pulse-chase incubations with 14C- and 13C-labeled bicarbonate under varying environmental conditions. A combination of tissue autoradiography and nanoscale secondary ion mass spectrometry coupled with transmission electron microscopy was used to follow the fate of the radioactive and stable isotopes of carbon, respectively. We show that symbiont cells fix substantial amounts of inorganic carbon in the presence of sulfide, but also (to a lesser degree) in the absence of sulfide by utilizing internally stored sulfur. Isotope labeling patterns point to translocation of organic carbon to the host through both release of these compounds and digestion of symbiont cells. The latter mechanism is also supported by ultracytochemical detection of acid phosphatase in lysosomes and in food vacuoles of ciliate cells. Fluorescence in situ hybridization of freshly collected ciliates revealed that the vast majority of ingested microbial cells were ectosymbionts.

  • Flux Analysis of Free Amino Sugars and Amino Acids in Soils by Isotope Tracing with a Novel Liquid Chromatography/High Resolution Mass Spectrometry Platform

    Hu Y, Zheng Q, Wanek W
    2017 - analytical chemistry, 17: 9192-9200

    Abstract: 

    Soil fluxomics analysis can provide pivotal information for understanding soil biochemical pathways and their regulation, but direct measurement methods are rare. Here, we describe an approach to measure soil extracellular metabolite (amino sugar and amino acid) concentrations and fluxes based on a 15N isotope pool dilution technique via liquid chromatography and high-resolution mass spectrometry. We produced commercially unavailable 15N and 13C labeled amino sugars and amino acids by hydrolyzing peptidoglycan isolated from isotopically labeled bacterial biomass and used them as tracers (15N) and internal standards (13C). High-resolution (Orbitrap Exactive) MS with a resolution of 50 000 allowed us to separate different stable isotope labeled analogues across a large range of metabolites. The utilization of 13C internal standards greatly improved the accuracy and reliability of absolute quantification. We successfully applied this method to two types of soils and quantified the extracellular gross fluxes of 2 amino sugars, 18 amino acids, and 4 amino acid enantiomers. Compared to the influx and efflux rates of most amino acids, similar ones were found for glucosamine, indicating that this amino sugar is released through peptidoglycan and chitin decomposition and serves as an important nitrogen source for soil microorganisms. d-Alanine and d-glutamic acid derived from peptidoglycan decomposition exhibited similar turnover rates as their l-enantiomers. This novel approach offers new strategies to advance our understanding of the production and transformation pathways of soil organic N metabolites, including the unknown contributions of peptidoglycan and chitin decomposition to soil organic N cycling.

  • Rhizospheric microbial community of Caesalpinia spinosa (Mol.) Kuntze in conserved and deforested zones of the Atiquipa fog forest in Peru

    Cordero I, Ruiz-Diez B, Balaguer L, Richter A, Pueyo JJ, Rincon A
    2017 - Applied Soil Ecology, 114: 132-141

    Abstract: 

    Caesalpinia spinosa, tara, is the predominant fog catcher tree in the fog forest of Atiquipa, a biodiversity hotspot ecosystem within the coastal Peruvian desert highly threatened by intense land use over time. We investigated the impact of deforestation, as well as potential effects of the tree age (juveniles vs adults) and the type of tree (recruited vs planted), on the rhizospheric microbial communities of tara growing in contrasting landscapes (conserved vs deforested) of the Atiquipa forest.

    We used a phospholipid fatty acids analysis approach to study the microbial community associated with tara. Additionally, we isolated and sought for native rhizospheric bacteria with plant growth promoting (PGPR) traits to be used as potential inoculants for restoration projects.

    Deforestation profoundly altered the chemical and biological fertility of soils. All rhizospheric microorganisms were clearly reduced in abundance by deforestation, while the age or the type of trees had no effects. Both, deforestation and tree age influenced the assemblage of microbial communities, which tightly correlated with soil pH and organic matter among other soil properties. Adult trees harboured similar microbial communities in conserved and deforested soils being potential reservoirs of native microorganisms in the degraded areas. Some selected bacterial strains showed high plant growth promoting abilities, and PGPR traits were related with the isolation source of bacteria. The knowledge about key factors structuring the rhizospheric microbiota of tara and the identification of high-performing PGPR strains, provide a solid framework to formulate inocula for their use in restoration programmes in the Atiquipa fog forest.

  • Microbial utilization of mineral-associated nitrogen in soils

    Turner S, Meyer-Stüve S, Schippers A, Guggenberger G, Schaarschmidt F, Wild B, Richter A, Dohrmann R, Mikutta R
    2017 - Soil Biology and Biochemistry, 104: 185-196

    Abstract: 

    In soils, a large portion of organic nitrogen (ON) is associated with minerals and thus, possibly stabilized against biological decay. We therefore tested if mineral-associated N is an important N source for soil microorganisms, and which soil parameters control its bioavailability. Microcosm experiments with mineral-associated organic matter, obtained as heavy fraction (HF) via density fractionation, and bulk soil from mineral topsoil of the Franz Josef chronosequence were conducted for 125 days. We examined the effects of O2 status, soil age (differences in mineralogical properties), as well as cellulose and phosphate additions on the turnover of mineral-associated N. Using a combination of activity measurements and quantitative PCR, microbial N transformation rates and abundances of N-related functional genes (amoAnarGchiA) were determined. Similar or higher values for microbial N cycling rates and N-related functional abundances in the HF compared to bulk soil indicated that mineral-associated N provides an important bioavailable N source for soil microorganism. The turnover of mineral-associated N was mainly controlled by the O2 status. Besides, soil mineralogical properties significantly affected microbial N cycling and related gene abundances with the effect depending on the N substrate type (ON, NH4+ or NO3). In contrast, cellulose or phosphate addition hardly enhanced microbial utilization of mineral-associated N. The results of our microcosm study indicate that mineral-associated N is highly bioavailable in mineral topsoils, but effects of the mineral phase differ between N cycling processes.

  • Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils

    Puschenreiter M, Gruber B, Wenzel WW, Schindlegger Y, Hann S, Spangl B, Schenkeveld WDC, Kraemer SM, Oburger E
    2017 - Environmental and Experimental Botany, 138: 67-76

    Abstract: 

    We investigated to which extent phytosiderophores (PS), released by grasses for the acquisition of iron, solubilize other metals in contaminated soils, and how this affects metal mobilization and uptake in wheat plants. A plant-based bioassay (‘RHIZOtest’) and batch extraction scheme were carried out for assessing metal mobilisation in soil, PS exudation and metal accumulation in wheat. Increased PS exudation was observed in Fe-deficient wheat, leading to enhanced Zn, Cu, Mn and Ni concentrations in wheat shoots on some soils. In contrast, plant Cd and Pb concentrations were not affected. Likewise, in the batch experiment, strongly increased extractable Cu, Ni and Zn concentrations were observed, in particular when 100 or 1000 μM PS were added. Our results suggest that Fe deficiency can enhance the accumulation of some metals in shoots of grass species. Although our results indicate that the risk of enhanced accumulation of Cd and Pb in Fe deficient wheat shoots is rather small, further experiments conducted on soil for the complete vegetation period would be needed to confirm this observation.

  • Application of stable-isotope labelling techniques for the detection of active diazotrophs

    Angel R, Panhölzl C, Gabriel R, Herbold C, Wanek W, Richter A, Eichorst SA, Woebken D
    2017 - Environmental microbiology, in press

    Abstract: 

    Investigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation (BNF) is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free-living or symbionts. Free-living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15N-based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15N-RNA-SIP approach optimized for environmental samples and benchmarked to 15N-DNA-SIP. Lastly, we investigated the feasibility of using SIP-Raman microspectroscopy for detecting 15N-labelled cells. Taken together, these tools allow identifying and investigating active free-living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single-cell level.

  • Biphasic metabolism and host interaction of a chlamydial symbiont

    König L, Siegl A, Penz T, Haider S, Wentrup C, Polzin J, Mann E, Schmitz-Esser S, Domman D, Horn M
    2017 - mSystems, 2: e00202-16

    Abstract: 

    Chlamydiae are obligate intracellular bacteria comprising well-known human pathogens and ubiquitous symbionts of protists, which are characterized by a unique developmental cycle. Here we comprehensively analyzed gene expression dynamics of Protochlamydia amoebophila during infection of its Acanthamoeba host by RNA sequencing. This revealed a highly dynamic transcriptional landscape, where major transcriptional shifts are conserved among chlamydial symbionts and pathogens. Our data served to propose a time-resolved model for type III protein secretion during the developmental cycle, and we provide evidence for a biphasic metabolism of P. amoebophila during infection, which involves energy parasitism and amino acids as the carbon source during initial stages and a postreplicative switch to endogenous glucose-based ATP production. This fits well with major transcriptional changes in the amoeba host, where upregulation of complex sugar breakdown precedes the P. amoebophila metabolic switch. The biphasic chlamydial metabolism represents a unique adaptation to exploit eukaryotic host cells, which likely contributed to the evolutionary success of this group of microbes.

  • Peripheral blood vessels are a niche for blood-borne meningococci.

    Capel E, Barnier JP, Zomer AL, Bole-Feysot C, Nussbaumer T, Jamet A, Lécuyer H, Euphrasie D, Virion Z, Frapy E, Pélissier P, Join-Lambert O, Rattei T, Bourdoulous S, Nassif X, Coureuil M
    2017 - Virulence, in press

    Abstract: 

    Neisseria meningitidis is the causative agent of cerebrospinal meningitis and that of a rapidly progressing fatal septic shock known as purpura fulminans. Meningococcemia is characterized by bacterial adhesion to human endothelial cells of the microvessels. Host specificity has hampered studies on the role of blood vessels colonization in N. meningitidis associated pathogenesis. In this work, using a humanized model of SCID mice allowing the study of bacterial adhesion to human cells in an in vivo context we demonstrate that meningococcal colonization of human blood vessels is a prerequisite to the establishment of sepsis and lethality. To identify the molecular pathways involved in bacterial virulence, we performed transposon insertion site sequencing (Tn-seq) in vivo. Our results demonstrate that 36% of the genes that are important for growth in the blood of mice are dispensable when bacteria colonize human blood vessels, suggesting that human endothelial cells lining the blood vessels are feeding niches for N. meningitidis in vivo. Altogether, our work proposes a new paradigm for meningococcal virulence in which colonization of blood vessels is associated with metabolic adaptation and sustained bacteremia responsible for sepsis and subsequent lethality.

  • Ammonia-oxidising archaea living at low pH: Insights from comparative genomics

    Herbold CW, Lehtovirta-Morley LE, Jung M-Y, Jehmlich N, Hausmann B, Han P, Loy A, Pester M, Sayavedra-Soto LA, Rhee S-K, Prosser JI, Nicol GW, Wagner M, Gubry-Rangin C
    2017 - Environ Microbiol, In press

    Abstract: 

    Obligate acidophilic members of the thaumarchaeotal genus Candidatus Nitrosotalea play an important role in nitrification in acidic soils, but their evolutionary and physiological adaptations to acidic environments are still poorly understood, with only a single member of this genus (Ca. N. devanaterra) having its genome sequenced. In this study, we sequenced the genomes of two additional cultured Ca. Nitrosotalea strains, extracted an almost complete Ca. Nitrosotalea metagenome-assembled genome from an acidic fen, and performed comparative genomics of the four Ca. Nitrosotalea genomes with 19 other archaeal ammonia oxidiser genomes. Average nucleotide and amino acid identities revealed that the four Ca. Nitrosotalea strains represent separate species within the genus. The four Ca. Nitrosotalea genomes contained a core set of 103 orthologous gene families absent from all other ammonia-oxidizing archaea and, for most of these gene families, expression could be demonstrated in laboratory culture or the environment via proteomic or metatranscriptomic analyses, respectively. Phylogenetic analyses indicated that four of these core gene families were acquired by the Ca. Nitrosotalea common ancestor via horizontal gene transfer from acidophilic representatives of Euryarchaeota. We hypothesize that gene exchange with these acidophiles contributed to the competitive success of the Ca. Nitrosotalea lineage in acidic environments. 

  • Abiotic conversion of extracellular NH2OH contributes to N2O emission during ammonia oxidation

    Liu S, Han P, Hink L, Prosser JI, Wagner M, Brüggemann N
    2017 - Environ. Sci. Technol., in press

    Abstract: 

    Abiotic processes involving the reactive ammonia-oxidation intermediates nitric oxide (NO) or hydroxylamine (NH2OH) for N2O production has been indicated recently. The latter process would require the availability of substantial amounts of free NH2OH for chemical reactions during ammonia (NH3) oxidation, but little is known about extracellular NH2OH formation by the different clades of ammonia-oxidizing microbes. Here we determined extracellular NH2OH concentrations in culture media of several ammonia-oxidizing bacteria (AOB) and archaea (AOA), as well as one complete ammonia oxidizer (comammox) enrichment (Ca. Nitrospira inopinata) during incubation under standard cultivation conditions. NH2OH was measurable in the incubation media of Nitrosomonas europaea, Nitrosospira multiformis, Nitrososphaera gargensis, and Ca. Nitrosotenuis uzonensis, but not in media of the other tested AOB and AOA. NH2OH was also formed by the comammox enrichment during NH3 oxidation. This enrichment exhibited the largest NH2OH:final product ratio (1.92%), followed by N. multiformis (0.56%) and N. gargensis (0.46%). The maximum proportions of NH4+ converted to N2O via extracellular NH2OH during incubation, estimated on the basis of NH2OH abiotic conversion rates, were 0.12%, 0.08% and 0.14% for AOB, AOA and Ca. Nitrospira inopinata, respectively, and were consistent with published NH4+:N2O conversion ratios for AOB and AOA.

  • Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software.

    Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, Gregor I, Majda S, Fiedler J, Dahms E, Bremges A, Fritz A, Garrido-Oter R, Jørgensen TS, Shapiro N, Blood PD, Gurevich A, Bai Y, Turaev D, DeMaere MZ, Chikhi R, Nagarajan N, Quince C, Meyer F, Balvočiūtė M, Hansen LH, Sørensen SJ, Chia BKH, Denis B, Froula JL, Wang Z, Egan R, Don Kang D, Cook JJ, Deltel C, Beckstette M, Lemaitre C, Peterlongo P, Rizk G, Lavenier D, Wu YW, Singer SW, Jain C, Strous M, Klingenberg H, Meinicke P, Barton MD, Lingner T, Lin HH, Liao YC, Silva GGZ, Cuevas DA, Edwards RA, Saha S, Piro VC, Renard BY, Pop M, Klenk HP, Göker M, Kyrpides NC, Woyke T, Vorholt JA, Schulze-Lefert P, Rubin EM, Darling AE, Rattei T, McHardy AC
    2017 - Nat. Methods, in press

    Abstract: 

    Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.

  • Depth distribution and assembly of sulfate-reducing microbial communities in marine sediments of Aarhus Bay

    Jochum LM, Chena X, Lever MA, Loy A, Jørgensen BB, Schramm A, Kjeldsen KU
    2017 - Appl Environ Microbiol, In press

    Abstract: 

    Most sulfate-reducing microorganisms (SRM) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRM and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRM by amplicon-sequencing and quantifying dsrB, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRM were present in all geochemical zones including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurring across the transition from bioturbated surface sediments into non-bioturbated sediments below, where redox fluctuations and input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community.

  • Bottled aqua incognita: Microbiota assembly and dissolved organic matter diversity in natural mineral waters

    Lesaulnier CC, Herbold CW, Pelikan C, Gérard C, Le Coz X, Gagnot S, Berry D, Niggemann J, Dittmar T, Singer GA, Loy A
    2017 - Microbiome, 5: 126

    Abstract: 

    Background: Non-carbonated natural mineral waters contain microorganisms that regularly grow after bottling despite low concentrations of dissolved organic matter (DOM). Yet, the compositions of bottled water microbiota and organic substrates that fuel microbial activity, and how both change after bottling, are still largely unknown.

    Results: We performed a multifaceted analysis of microbiota and DOM diversity in twelve natural mineral waters from six European countries. 16S rRNA gene-based analyses showed that less than ten species-level operational taxonomic units (OTUs) dominated the bacterial communities in the water phase and associated with the bottle wall after a short phase of post-bottling growth. Members of the betaproteobacterial genera Curvibacter, Aquabacterium, and Polaromonas (Comamonadaceae) grew in most waters and represent ubiquitous, mesophilic, heterotrophic aerobes in bottled waters. Ultrahigh-resolution mass spectrometry of DOM in bottled waters and their corresponding source waters identified thousands of molecular formulae characteristic of mostly refractory, soil-derived DOM.

    Conclusions. The bottle environment, including source water physicochemistry, selected for growth of a similar low-diversity microbiota across various bottled waters. Relative abundance changes of hundreds of multi-carbon molecules were related to growth of less than ten abundant OTUs. We thus speculate that individual bacteria cope with oligotrophic conditions by simultaneously consuming diverse DOM molecules.

  • Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets.

    Walker A, Pfitzner B, Harir M, Schaubeck M, Calasan J, Heinzmann SS, Turaev D, Rattei T, Endesfelder D, Castell WZ, Haller D, Schmid M, Hartmann A, Schmitt-Kopplin P
    2017 - Sci Rep, 1: 11047

    Abstract: 

    The gut microbiota generates a huge pool of unknown metabolites, and their identification and characterization is a key challenge in metabolomics. However, there are still gaps on the studies of gut microbiota and their chemical structures. In this investigation, an unusual class of bacterial sulfonolipids (SLs) is detected in mouse cecum, which was originally found in environmental microbes. We have performed a detailed molecular level characterization of this class of lipids by combining high-resolution mass spectrometry and liquid chromatography analysis. Eighteen SLs that differ in their capnoid and fatty acid chain compositions were identified. The SL called "sulfobacin B" was isolated, characterized, and was significantly increased in mice fed with high-fat diets. To reveal bacterial producers of SLs, metagenome analysis was acquired and only two bacterial genera, i.e., Alistipes and Odoribacter, were revealed to be responsible for their production. This knowledge enables explaining a part of the molecular complexity introduced by microbes to the mammalian gastrointestinal tract and can be used as chemotaxonomic evidence in gut microbiota.

  • Identification of secondary metabolite gene clusters in the Pseudovibrio genus reveals encouraging biosynthetic potential toward the production of novel bioactive compounds

    Naughton LM, Romano S, O'Gara F, Dobson ADW
    2017 - Front Microbiol, 8: 1494

    Abstract: 

    Increased incidences of antimicrobial resistance and the emergence of pan-resistant 'superbugs' have provoked an extreme sense of urgency amongst researchers focusing on the discovery of potentially novel antimicrobial compounds. A strategic shift in focus from the terrestrial to the marine environment has resulted in the discovery of a wide variety of structurally and functionally diverse bioactive compounds from numerous marine sources, including sponges. Bacteria found in close association with sponges and other marine invertebrates have recently gained much attention as potential sources of many of these novel bioactive compounds. Members of the genus Pseudovibrio are one such group of organisms. In this study, we interrogate the genomes of 21 Pseudovibrio strains isolated from a variety of marine sources, for the presence, diversity and distribution of biosynthetic gene clusters (BGCs). We expand on results obtained from antiSMASH analysis to demonstrate the similarity between the Pseudovibrio-related BGCs and those characterized in other bacteria and corroborate our findings with phylogenetic analysis. We assess how domain organization of the most abundant type of BGCs present among the isolates (Non-ribosomal peptide synthetases and Polyketide synthases) may influence the diversity of compounds produced by these organisms and highlight for the first time the potential for novel compound production from this genus of bacteria, using a genome guided approach.

  • Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle.

    Kits KD, Sedlacek CJ, Lebedeva EV, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein LY, Daims H, Wagner M
    2017 - Nature, 549: 269-272

    Abstract: 

    Nitrification, the oxidation of ammonia (NH3) via nitrite (NO2(-)) to nitrate (NO3(-)), is a key process of the biogeochemical nitrogen cycle. For decades, ammonia and nitrite oxidation were thought to be separately catalysed by ammonia-oxidizing bacteria (AOB) and archaea (AOA), and by nitrite-oxidizing bacteria (NOB). The recent discovery of complete ammonia oxidizers (comammox) in the NOB genus Nitrospira, which alone convert ammonia to nitrate, raised questions about the ecological niches in which comammox Nitrospira successfully compete with canonical nitrifiers. Here we isolate a pure culture of a comammox bacterium, Nitrospira inopinata, and show that it is adapted to slow growth in oligotrophic and dynamic habitats on the basis of a high affinity for ammonia, low maximum rate of ammonia oxidation, high growth yield compared to canonical nitrifiers, and genomic potential for alternative metabolisms. The nitrification kinetics of four AOA from soil and hot springs were determined for comparison. Their surprisingly poor substrate affinities and lower growth yields reveal that, in contrast to earlier assumptions, AOA are not necessarily the most competitive ammonia oxidizers present in strongly oligotrophic environments and that N. inopinata has the highest substrate affinity of all analysed ammonia oxidizer isolates except the marine AOA Nitrosopumilus maritimus SCM1 (ref. 3). These results suggest a role for comammox organisms in nitrification under oligotrophic and dynamic conditions.

  • In situ architecture, function, and evolution of a contractile injection system.

    Böck D, Medeiros JM, Tsao HF, Penz T, Weiss GL, Aistleitner K, Horn M, Pilhofer M
    2017 - Science, 6352: 713-717

    Abstract: 

    Contractile injection systems mediate bacterial cell-cell interactions by a bacteriophage tail-like structure. In contrast to extracellular systems, the type 6 secretion system (T6SS) is defined by intracellular localization and attachment to the cytoplasmic membrane. Here we used cryo-focused ion beam milling, electron cryotomography, and functional assays to study a T6SS in Amoebophilus asiaticus The in situ architecture revealed three modules, including a contractile sheath-tube, a baseplate, and an anchor. All modules showed conformational changes upon firing. Lateral baseplate interactions coordinated T6SSs in hexagonal arrays. The system mediated interactions with host membranes and may participate in phagosome escape. Evolutionary sequence analyses predicted that T6SSs are more widespread than previously thought. Our insights form the basis for understanding T6SS key concepts and exploring T6SS diversity.

  • Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T
    2017 - Nat. Biotechnol., 8: 725-731

    Abstract: 

    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.

  • Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea.

    Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA, Tringe SG, Ivanova NN, Copeland A, Clum A, Becraft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T, Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-Mizrachi I, Tyson GW, Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM, Schriml L, Banfield JF, Hugenholtz P, Woyke T
    2017 - Nat. Biotechnol., 8: 725-731

    Abstract: 

    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.

  • Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments.

    Dyksma S, Pjevac P, Ovanesov K, Greuter L
    2017 - Environ. Microbiol., In press

    Abstract: 

    Molecular hydrogen (H2 ) is the key intermediate in the anaerobic degradation of organic matter. Its removal by H2 -oxidizing microorganisms is essential to keep anaerobic degradation energetically favorable. Sulfate-reducing microorganisms (SRM) are known as the main H2 scavengers in anoxic marine sediments. Although the community of marine SRM has been extensively studied, those consuming H2 in situ are completely unknown. We combined metagenomics, PCR-based clone libraries, single-amplified genomes (SAGs) and metatranscriptomics to identify potentially H2 -consuming SRM in anoxic coastal sediments. The vast majority of SRM-related H2 ase sequences were assigned to group 1b and 1c [NiFe]-H2 ases of the deltaproteobacterial order Desulfobacterales. Surprisingly, the same sequence types were similarly highly expressed in spring and summer, suggesting that these are stable and integral members of the H2 -consuming community. Notably, one sequence cluster from the SRM group 1 consistently accounted for around half of all [NiFe]-H2 ase transcripts. Using SAGs, we could link this cluster with the 16S rRNA genes of the uncultured Sva0081-group of the family Desulfobacteraceae. Sequencing of 16S rRNA gene amplicons and H2 ase gene libraries suggested consistently high in situ abundance of the Sva0081 group also in other marine sediments. Together with other Desulfobacterales these likely are important H2 -scavengers in marine sediments. This article is protected by copyright. All rights reserved.

  • The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel.

    Müller HM, Schäfer N, Bauer H, Geiger D, Lautner S, Fromm J, Riederer M, Bueno A, Nussbaumer T, Mayer K, Alquraishi SA, Alfarhan AH, Neher E, Al-Rasheid KAS, Ache P, Hedrich R
    2017 - New Phytol., in press

    Abstract: 

    Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl(-) medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium.

  • Unexpected genomic features in widespread intracellular bacteria: evidence for motility of marine chlamydiae.

    Collingro A, Köstlbacher S, Greuter L, Stepanauskas R, Hallam SJ, Horn M
    2017 - ISME J, 10: 2334-2344

    Abstract: 

    Chlamydiae are obligate intracellular bacteria comprising important human pathogens and symbionts of protists. Molecular evidence indicates a tremendous diversity of chlamydiae particularly in marine environments, yet our current knowledge is based mainly on terrestrial representatives. Here we provide first insights into the biology of marine chlamydiae representing three divergent clades. Our analysis of single-cell amplified genomes revealed hallmarks of the chlamydial lifestyle, supporting the ancient origin of their characteristic developmental cycle and major virulence mechanisms. Surprisingly, these chlamydial genomes encode a complete flagellar apparatus, a previously unreported feature. We show that flagella are an ancient trait that was subject to differential gene loss among extant chlamydiae. Together with a chemotaxis system, these marine chlamydiae are likely motile, with flagella potentially playing a role during host cell infection. This study broadens our view on chlamydial biology and indicates a largely underestimated potential to adapt to different hosts and environments.

  • 'Candidatus Cochliophilus cryoturris' (Coxiellaceae), a symbiont of the testate amoeba Cochliopodium minus.

    Tsao HF, Scheikl U, Volland JM, Köhsler M, Bright M, Walochnik J, Horn M
    2017 - Sci Rep, 1: 3394

    Abstract: 

    Free-living amoebae are well known for their role in controlling microbial community composition through grazing, but some groups, namely Acanthamoeba species, also frequently serve as hosts for bacterial symbionts. Here we report the first identification of a bacterial symbiont in the testate amoeba Cochliopodium. The amoeba was isolated from a cooling tower water sample and identified as C. minus. Fluorescence in situ hybridization and transmission electron microscopy revealed intracellular symbionts located in vacuoles. 16S rRNA-based phylogenetic analysis identified the endosymbiont as member of a monophyletic group within the family Coxiellaceae (Gammaprotebacteria; Legionellales), only moderately related to known amoeba symbionts. We propose to tentatively classify these bacteria as 'Candidatus Cochliophilus cryoturris'. Our findings add both, a novel group of amoeba and a novel group of symbionts, to the growing list of bacteria-amoeba relationships.

  • Crenothrix are major methane consumers in stratified lakes.

    Oswald K, Graf JS, Littmann S, Tienken D, Brand A, Wehrli B, Albertsen M, Daims H, Wagner M, Kuypers MM, Schubert CJ, Milucka J
    2017 - ISME J, 9: 2124-2140
    Crenothrix

    Abstract: 

    Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N2O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.

  • Capturing the genetic makeup of the active microbiome in situ.

    Singer E, Wagner M, Woyke T
    2017 - ISME J, 9: 1949-1963

    Abstract: 

    More than any other technology, nucleic acid sequencing has enabled microbial ecology studies to be complemented with the data volumes necessary to capture the extent of microbial diversity and dynamics in a wide range of environments. In order to truly understand and predict environmental processes, however, the distinction between active, inactive and dead microbial cells is critical. Also, experimental designs need to be sensitive toward varying population complexity and activity, and temporal as well as spatial scales of process rates. There are a number of approaches, including single-cell techniques, which were designed to study in situ microbial activity and that have been successively coupled to nucleic acid sequencing. The exciting new discoveries regarding in situ microbial activity provide evidence that future microbial ecology studies will indispensably rely on techniques that specifically capture members of the microbiome active in the environment. Herein, we review those currently used activity-based approaches that can be directly linked to shotgun nucleic acid sequencing, evaluate their relevance to ecology studies, and discuss future directions.

  • Evaluating the Detection of Hydrocarbon-Degrading Bacteria in 16S rRNA Gene Sequencing Surveys.

    Berry D, Gutierrez T
    2017 - Front Microbiol, 8: 2460

    Abstract: 

    Hydrocarbonoclastic bacteria (HCB) play a key role in the biodegradation of oil hydrocarbons in marine and other environments. A small number of taxa have been identified as obligate HCB, notably the Gammaproteobacterial genera Alcanivorax, Cycloclasticus, Marinobacter, Neptumonas, Oleiphilus, Oleispira, and Thalassolituus, as well as the Alphaproteobacterial genus Thalassospira. Detection of HCB in amplicon-based sequencing surveys relies on high coverage by PCR primers and accurate taxonomic classification. In this study, we performed a phylogenetic analysis to identify 16S rRNA gene sequence regions that represent the breadth of sequence diversity within these taxa. Using validated sequences, we evaluated 449 universal 16S rRNA gene-targeted bacterial PCR primer pairs for their coverage of these taxa. The results of this analysis provide a practical framework for selection of suitable primer sets for optimal detection of HCB in sequencing surveys.

  • Vibrational Spectroscopy for Imaging Single Microbial Cells in Complex Biological Samples.

    Harrison JP, Berry D
    2017 - Front Microbiol, 675

    Abstract: 

    Vibrational spectroscopy is increasingly used for the rapid and non-destructive imaging of environmental and medical samples. Both Raman and Fourier-transform infrared (FT-IR) imaging have been applied to obtain detailed information on the chemical composition of biological materials, ranging from single microbial cells to tissues. Due to its compatibility with methods such as stable isotope labeling for the monitoring of cellular activities, vibrational spectroscopy also holds considerable power as a tool in microbial ecology. Chemical imaging of undisturbed biological systems (such as live cells in their native habitats) presents unique challenges due to the physical and chemical complexity of the samples, potential for spectral interference, and frequent need for real-time measurements. This Mini Review provides a critical synthesis of recent applications of Raman and FT-IR spectroscopy for characterizing complex biological samples, with a focus on developments in single-cell imaging. We also discuss how new spectroscopic methods could be used to overcome current limitations of single-cell analyses. Given the inherent complementarity of Raman and FT-IR spectroscopic methods, we discuss how combining these approaches could enable us to obtain new insights into biological activities either in situ or under conditions that simulate selected properties of the natural environment.

  • HuR small-molecule inhibitor elicits differential effects in adenomatosis polyposis and colorectal carcinogenesis

    Lang M, Berry D, Passecker K, Mesteri I, Bhuju S, Ebner F, Sedlyarov V, Evstatiev R, Dammann K, Loy A, Kuzyk O, Kovarik P, Khare V, Beibel M, Roma G, Meisner-Kober N, Gasche C
    2017 - Cancer Res., 77: 2424-2438

    Abstract: 

    HuR is an RNA-binding protein implicated in immune homeostasis and various cancers, including colorectal cancer. HuR binding to AU-rich elements within the 3' untranslated region of mRNAs encoding oncogenes, growth factors, and various cytokines leads message stability and translation. In this study, we evaluated HuR as a small-molecule target for preventing colorectal cancer in high-risk groups such as those with familial adenomatosis polyposis (FAP) or inflammatory bowel disease (IBD). In human specimens, levels of cytoplasmic HuR were increased in colonic epithelial cells from patients with IBD, IBD-cancer, FAP-adenoma, and colorectal cancer, but not in patients with IBD-dysplasia. Intraperitoneal injection of the HuR small-molecule inhibitor MS-444 in AOM/DSS mice, a model of IBD and inflammatory colon cancer, augmented DSS-induced weight loss and increased tumor multiplicity, size, and invasiveness. MS-444 treatment also abrogated tumor cell apoptosis and depleted tumor-associated eosinophils, accompanied by a decrease in IL18 and eotaxin-1. In contrast, HuR inhibition in APCMin mice, a model of FAP and colon cancer, diminished the number of small intestinal tumors generated. In this setting, fecal microbiota, evaluated by 16S rRNA gene amplicon sequencing, shifted to a state of reduced bacterial diversity, with an increased representation of Prevotella, Akkermansia, and Lachnospiraceae Taken together, our results indicate that HuR activation is an early event in FAP-adenoma but is not present in IBD-dysplasia. Furthermore, our results offer a preclinical proof of concept for HuR inhibition as an effective means of FAP chemoprevention, with caution advised in the setting of IBD.

  • The life sulfuric: Microbial ecology of sulfur cycling in marine sediments.

    Wasmund K, Mussmann M, Loy A
    2017 - Environ Microbiol Rep, 9: 323-344

    Abstract: 

    Almost the entire seafloor is covered with sediments that can be more than 10,000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasize how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. This article is protected by copyright. All rights reserved.

  • Giant viruses with an expanded complement of translation system components.

    Schulz F, Yutin N, Ivanova NN, Ortega DR, Lee TK, Vierheilig J, Daims H, Horn M, Wagner M, Jensen GJ, Kyrpides NC, Koonin EV, Woyke T
    2017 - Science, 6333: 82-85
    Klosneuvirus

    Abstract: 

    The discovery of giant viruses blurred the sharp division between viruses and cellular life. Giant virus genomes encode proteins considered as signatures of cellular organisms, particularly translation system components, prompting hypotheses that these viruses derived from a fourth domain of cellular life. Here we report the discovery of a group of giant viruses (Klosneuviruses) in metagenomic data. Compared with other giant viruses, the Klosneuviruses encode an expanded translation machinery, including aminoacyl transfer RNA synthetases with specificities for all 20 amino acids. Notwithstanding the prevalence of translation system components, comprehensive phylogenomic analysis of these genes indicates that Klosneuviruses did not evolve from a cellular ancestor but rather are derived from a much smaller virus through extensive gain of host genes.

  • Members of the Oral Microbiota Are Associated with IL-8 Release by Gingival Epithelial Cells in Healthy Individuals.

    Schueller K, Riva A, Pfeiffer S, Berry D, Somoza V
    2017 - Front Microbiol, 8: 416

    Abstract: 

    The triggers for the onset of oral diseases are still poorly understood. The aim of this study was to characterize the oral bacterial community in healthy humans and its association with nutrition, oral hygiene habits, and the release of the inflammatory marker IL-8 from gingival epithelial cells (GECs) with and without stimulation by bacterial endotoxins to identify possible indicator operational taxonomic units (OTUs) associated with inflammatory marker status. GECs from 21 healthy participants (13 females, 8 males) were incubated with or without addition of bacterial lipopolysaccharides (LPSs), and the oral microbiota was profiled using 16S rRNA gene-targeted sequencing. The basal IL-8 release after 6 h was between 9.9 and 98.2 pg/ml, and bacterial communities were characteristic for healthy oral microbiota. The composition of the oral microbiota was associated with basal IL-8 levels, the intake of meat, tea, white wine, sweets and the use of chewing gum, as well as flossing habits, allergies, gender and body mass index. Additionally, eight OTUs were associated with high basal levels of IL-8 and GEC response to LPS, with high basal levels of IL-8, and 1 with low basal levels of IL8. The identification of indicator bacteria in healthy subjects with high levels of IL-8 release is of importance as they may be promising early warning indicators for the possible onset of oral diseases.

  • Time-course expression QTL atlas of the global transcriptional response of wheat to Fusarium graminearum.

    Samad-Zamini M, Schweiger W, Nussbaumer T, Mayer KF, Buerstmayr H
    2017 - Plant Biotechnol. J., in press

    Abstract: 

    Fusarium head blight is a devastating disease of small grain cereals such as bread wheat (Triticum aestivum). The pathogen switches from a biotrophic to a nectrotrophic lifestyle in course of disease development forcing its host to adapt its defence strategies. Using a genetical genomics approach we illustrate genome-wide reconfigurations of genetic control over transcript abundances between two decisive time points after inoculation with the causative pathogen Fusarium graminearum. Whole transcriptome measurements have been recorded for 163 lines of a wheat doubled haploid population segregating for several resistance genes yielding 15 552 at 30 hours and 15 888 eQTL at 50 hours after inoculation. The genetic map saturated with transcript abundance-derived markers identified of a novel QTL on chromosome 6A, besides the previously reported QTL Fhb1 and Qfhs.ifa-5A. We find a highly different distribution of eQTL between time points with about 40% of eQTL being unique for the respective assessed time points. But also for more than 20% of genes governed by eQTL at either time point genetic control changes in time. These changes are reflected in the dynamic compositions of three major regulatory hotspots on chromosomes 2B, 4A and 5A. In particular control of defence-related biological mechanisms concentrated in the hotspot at 4A shift to hotspot 2B as the disease progresses. Hotspots do not colocalize with phenotypic QTL and within their intervals no higher than expected number of eQTL was detected. Thus, resistance conferred by either QTL is mediated by few or single genes. This article is protected by copyright. All rights reserved.

  • Natural haplotypes of FLM non-coding sequences fine-tune flowering time in ambient spring temperatures in Arabidopsis.

    Lutz U, Nussbaumer T, Spannagl M, Diener J, Mayer KF, Schwechheimer C
    2017 - Elife, in press

    Abstract: 

    Cool ambient temperatures are major cues determining flowering time in spring. The mechanisms promoting or delaying flowering in response to ambient temperature changes are only beginning to be understood. In Arabidopsis thaliana, FLOWERING LOCUS M (FLM) regulates flowering in the ambient temperature range and FLM is transcribed and alternatively spliced in a temperature-dependent manner. We identify polymorphic promoter and intronic sequences required for FLM expression and splicing. In transgenic experiments covering 69% of the available sequence variation in two distinct sites, we show that variation in the abundance of the FLM-ß splice form strictly correlate (R2 = 0.94) with flowering time over an extended vegetative period. The FLM polymorphisms lead to changes in FLM expression (PRO2+) but may also affect FLM intron 1 splicing (INT6+). This information could serve to buffer the anticipated negative effects on agricultural systems and flowering that may occur during climate change.

  • Variant profiling of evolving prokaryotic populations.

    Zojer M, Schuster LN, Schulz F, Pfundner A, Horn M, Rattei T
    2017 - PeerJ, e2997

    Abstract: 

    Genomic heterogeneity of bacterial species is observed and studied in experimental evolution experiments and clinical diagnostics, and occurs as micro-diversity of natural habitats. The challenge for genome research is to accurately capture this heterogeneity with the currently used short sequencing reads. Recent advances in NGS technologies improved the speed and coverage and thus allowed for deep sequencing of bacterial populations. This facilitates the quantitative assessment of genomic heterogeneity, including low frequency alleles or haplotypes. However, false positive variant predictions due to sequencing errors and mapping artifacts of short reads need to be prevented. We therefore created VarCap, a workflow for the reliable prediction of different types of variants even at low frequencies. In order to predict SNPs, InDels and structural variations, we evaluated the sensitivity and accuracy of different software tools using synthetic read data. The results suggested that the best sensitivity could be reached by a union of different tools, however at the price of increased false positives. We identified possible reasons for false predictions and used this knowledge to improve the accuracy by post-filtering the predicted variants according to properties such as frequency, coverage, genomic environment/localization and co-localization with other variants. We observed that best precision was achieved by using an intersection of at least two tools per variant. This resulted in the reliable prediction of variants above a minimum relative abundance of 2%. VarCap is designed for being routinely used within experimental evolution experiments or for clinical diagnostics. The detected variants are reported as frequencies within a VCF file and as a graphical overview of the distribution of the different variant/allele/haplotype frequencies. The source code of VarCap is available at https://github.com/ma2o/VarCap. In order to provide this workflow to a broad community, we implemeted VarCap on a Galaxy webserver, which is accessible at http://galaxy.csb.univie.ac.at.

  • Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system.

    Sauder LA, Albertsen M, Engel K, Schwarz J, Nielsen PH, Wagner M, Neufeld JD
    2017 - ISME J, 5: 1142-1157
    Nitrosocosmicus

    Abstract: 

    Thaumarchaeota have been detected in several industrial and municipal wastewater treatment plants (WWTPs), despite the fact that ammonia-oxidizing archaea (AOA) are thought to be adapted to low ammonia environments. However, the activity, physiology and metabolism of WWTP-associated AOA remain poorly understood. We report the cultivation and complete genome sequence of Candidatus Nitrosocosmicus exaquare, a novel AOA representative from a municipal WWTP in Guelph, Ontario (Canada). In enrichment culture, Ca. N. exaquare oxidizes ammonia to nitrite stoichiometrically, is mesophilic, and tolerates at least 15 mm of ammonium chloride or sodium nitrite. Microautoradiography (MAR) for enrichment cultures demonstrates that Ca. N. exaquare assimilates bicarbonate in association with ammonia oxidation. However, despite using inorganic carbon, the ammonia-oxidizing activity of Ca. N. exaquare is greatly stimulated in enrichment culture by the addition of organic compounds, especially malate and succinate. Ca. N. exaquare cells are coccoid with a diameter of ~1-2 μm. Phylogenetically, Ca. N. exaquare belongs to the Nitrososphaera sister cluster within the Group I.1b Thaumarchaeota, a lineage which includes most other reported AOA sequences from municipal and industrial WWTPs. The 2.99 Mbp genome of Ca. N. exaquare encodes pathways for ammonia oxidation, bicarbonate fixation, and urea transport and breakdown. In addition, this genome encodes several key genes for dealing with oxidative stress, including peroxidase and catalase. Incubations of WWTP biofilm demonstrate partial inhibition of ammonia-oxidizing activity by 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), suggesting that Ca. N. exaquare-like AOA may contribute to nitrification in situ. However, CARD-FISH-MAR showed no incorporation of bicarbonate by detected Thaumarchaeaota, suggesting that detected AOA may incorporate non-bicarbonate carbon sources or rely on an alternative and yet unknown metabolism.

  • Viruses comprise an extensive pool of mobile genetic elements in eukaryote cell cultures and human clinical samples.

    Thannesberger J, Hellinger HJ, Klymiuk I, Kastner MT, Rieder FJ, Schneider M, Fister S, Lion T, Kosulin K, Laengle J, Bergmann M, Rattei T, Steininger C
    2017 - FASEB J., in press

    Abstract: 

    Viruses shape a diversity of ecosystems by modulating their microbial, eukaryotic, or plant host metabolism. The complexity of virus-host interaction networks is progressively fathomed by novel metagenomic approaches. By using a novel metagenomic method, we explored the virome in mammalian cell cultures and clinical samples to identify an extensive pool of mobile genetic elements in all of these ecosystems. Despite aseptic treatment, cell cultures harbored extensive and diverse phage populations with a high abundance of as yet unknown and uncharacterized viruses (viral dark matter). Unknown phages also predominated in the oropharynx and urine of healthy individuals and patients infected with cytomegalovirus despite demonstration of active cytomegalovirus replication. The novelty of viral sequences correlated primarily with the individual evaluated, whereas relative abundance of encoded protein functions was associated with the ecologic niches probed. Together, these observations demonstrate the extensive presence of viral dark matter in human and artificial ecosystems.-Thannesberger, J., Hellinger, H.-J., Klymiuk, I., Kastner, M.-T., Rieder, F. J. J., Schneider, M., Fister, S., Lion, T., Kosulin, K., Laengle, J., Bergmann, M., Rattei, T., Steininger, C. Viruses comprise an extensive pool of mobile genetic elements in eukaryote cell cultures and human clinical samples.

  • Lifestyle and horizontal gene transfer-mediated evolution of Mucispirillum schaedleri, a core member of the murine gut microbiota

    Loy A, Pfann C, Steinberger M, Hanson B, Herp S, Brugiroux S, Gomes Neto JC, Boekschoten MV, Schwab C, Urich T, Ramer-Tait AE, Rattei T, Stecher B, Berry D
    2017 - mSystems, 2: e00171-16

    Abstract: 

    Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem.

  • Lifestyle and Horizontal Gene Transfer-Mediated Evolution of Mucispirillum schaedleri, a Core Member of the Murine Gut Microbiota.

    Loy A, Pfann C, Steinberger M, Hanson B, Herp S, Brugiroux S, Gomes Neto JC, Boekschoten MV, Schwab C, Urich T, Ramer-Tait AE, Rattei T, Stecher B, Berry D
    2017 - mSystems, 1: in press

    Abstract: 

    Mucispirillum schaedleri is an abundant inhabitant of the intestinal mucus layer of rodents and other animals and has been suggested to be a pathobiont, a commensal that plays a role in disease. In order to gain insights into its lifestyle, we analyzed the genome and transcriptome of M. schaedleri ASF 457 and performed physiological experiments to test traits predicted by its genome. Although described as a mucus inhabitant, M. schaedleri has limited capacity for degrading host-derived mucosal glycans and other complex polysaccharides. Additionally, M. schaedleri reduces nitrate and expresses systems for scavenging oxygen and reactive oxygen species in vivo, which may account for its localization close to the mucosal tissue and expansion during inflammation. Also of note, M. schaedleri harbors a type VI secretion system and putative effector proteins and can modify gene expression in mucosal tissue, suggesting intimate interactions with its host and a possible role in inflammation. The M. schaedleri genome has been shaped by extensive horizontal gene transfer, primarily from intestinal Epsilon- and Deltaproteobacteria, indicating that horizontal gene transfer has played a key role in defining its niche in the gut ecosystem. IMPORTANCE Shifts in gut microbiota composition have been associated with intestinal inflammation, but it remains unclear whether inflammation-associated bacteria are commensal or detrimental to their host. Here, we studied the lifestyle of the gut bacterium Mucispirillum schaedleri, which is associated with inflammation in widely used mouse models. We found that M. schaedleri has specialized systems to handle oxidative stress during inflammation. Additionally, it expresses secretion systems and effector proteins and can modify the mucosal gene expression of its host. This suggests that M. schaedleri undergoes intimate interactions with its host and may play a role in inflammation. The insights presented here aid our understanding of how commensal gut bacteria may be involved in altering susceptibility to disease.

  • Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide.

    Di Giglio MG, Muttenthaler M, Harpsøe K, Liutkeviciute Z, Keov P, Eder T, Rattei T, Arrowsmith S, Wray S, Marek A, Elbert T, Alewood PF, Gloriam DE, Gruber CW
    2017 - Sci Rep, 41002

    Abstract: 

    Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  • Unraveling the microbial processes of black band disease in corals through integrated genomics.

    Sato Y, Ling EY, Turaev D, Laffy P, Weynberg KD, Rattei T, Willis BL, Bourne DG
    2017 - Sci Rep, 40455

    Abstract: 

    Coral disease outbreaks contribute to the ongoing degradation of reef ecosystems, however, microbial mechanisms underlying the onset and progression of most coral diseases are poorly understood. Black band disease (BBD) manifests as a cyanobacterial-dominated microbial mat that destroys coral tissues as it rapidly spreads over coral colonies. To elucidate BBD pathogenesis, we apply a comparative metagenomic and metatranscriptomic approach to identify taxonomic and functional changes within microbial lesions during in-situ development of BBD from a comparatively benign stage termed cyanobacterial patches. Results suggest that photosynthetic CO2-fixation in Cyanobacteria substantially enhances productivity of organic matter within the lesion during disease development. Photosynthates appear to subsequently promote sulfide-production by Deltaproteobacteria, facilitating the major virulence factor of BBD. Interestingly, our metagenome-enabled transcriptomic analysis reveals that BBD-associated cyanobacteria have a putative mechanism that enables them to adapt to higher levels of hydrogen sulfide within lesions, underpinning the pivotal roles of the dominant cyanobacterium within the polymicrobial lesions during the onset of BBD. The current study presents sequence-based evidence derived from whole microbial communities that unravel the mechanism of development and progression of BBD.

  • Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments.

    Mussmann M, Pjevac P, Krüger K, Dyksma S
    2017 - ISME J, in press

    Abstract: 

    To date, very little is known about the bacterial core community of marine sediments. Here we study the environmental distribution, abundance and ecogenomics of the gammaproteobacterial Woeseiaceae/JTB255 marine benthic group. A meta-analysis of published work shows that the Woeseiaceae/JTB255 are ubiquitous and consistently rank among the most abundant 16S rRNA gene sequences in diverse marine sediments. They account for up to 22% of bacterial amplicons and 6% of total cell counts in European and Australian coastal sediments. The analysis of a single-cell genome, metagenomic bins and the genome of the next cultured relative Woeseia oceani indicated a broad physiological range, including heterotrophy and facultative autotrophy. All tested (meta)genomes encode a truncated denitrification pathway to nitrous oxide. The broad range of energy-yielding metabolisms possibly explains the ubiquity and high abundance of Woeseiaceae/JTB255 in marine sediments, where they carry out diverse, but yet unknown ecological functions.The ISME Journal advance online publication, 6 January 2017; doi:10.1038/ismej.2016.185.

  • Microbial nutrient niches in the gut.

    Pereira FC, Berry D
    2017 - Environ. Microbiol., 4: 1366-1378

    Abstract: 

    The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations.

  • A 12-week intervention with nonivamide, a TRPV1 agonist, prevents a dietary-induced body fat gain and increases peripheral serotonin in moderately overweight subjects.

    Hochkogler CM, Lieder B, Rust P, Berry D, Meier SM, Pignitter M, Riva A, Leitinger A, Bruk A, Wagner S, Hans J, Widder S, Ley JP, Krammer GE, Somoza V
    2017 - Mol Nutr Food Res, 5: in press

    Abstract: 

    A bolus administration of 0.15 mg nonivamide has previously been demonstrated to reduce energy intake in moderately overweight men. This 12-week intervention investigated whether a daily consumption of nonivamide in a protein-based product formulation promotes a reduction in body weight in healthy overweight subjects and affects outcome measures associated with mechanisms regulating food intake, e.g. plasma concentrations of (an)orexigenic hormones, energy substrates as well as changes in fecal microbiota.
    Nineteen overweight subjects were randomly assigned to either a control (C) or a nonivamide (NV) group. Changes in the body composition and plasma concentrations of satiating hormones were determined at fasting and 15, 30, 60, 90, and 120 min after a glucose load. Participants were instructed to consume 0.15 mg nonivamide per day in 450 mL of a milk shake additionally to their habitual diet. After treatment, a group difference in body fat mass change (-0.61 ± 0.36% in NV and +1.36 ± 0.38% in C) and an increase in postprandial plasma serotonin were demonstrated. Plasma metabolome and fecal microbiome read outs were not affected.
    A daily intake of 0.15 mg nonivamide helps to support to maintain a healthy body composition.

  • PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    Spannagl M, Nussbaumer T, Bader K, Gundlach H, Mayer KF
    2017 - Methods Mol. Biol., 33-44

    Abstract: 

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  • Convergent patterns in the evolution of mealybug symbioses involving different intrabacterial symbionts.

    Szabó G, Schulz F, Toenshoff ER, Volland JM, Finkel OM, Belkin S, Horn M
    2017 - ISME J, 3: 715-726
    Mealybugs (Trabutina mannipara) enveloped in a wax cover feeding on Tamarix twig

    Abstract: 

    Mealybugs (Insecta: Hemiptera: Pseudococcidae) maintain obligatory relationships with bacterial symbionts, which provide essential nutrients to their insect hosts. Most pseudococcinae mealybugs harbor a unique symbiosis setup with enlarged betaproteobacterial symbionts ('Candidatus Tremblaya princeps'), which themselves contain gammaproteobacterial symbionts. Here we investigated the symbiosis of the manna mealybug, Trabutina mannipara, using a metagenomic approach. Phylogenetic analyses revealed that the intrabacterial symbiont of T. mannipara represents a novel lineage within the Gammaproteobacteria, for which we propose the tentative name 'Candidatus Trabutinella endobia'. Combining our results with previous data available for the nested symbiosis of the citrus mealybug Planococcus citri, we show that synthesis of essential amino acids and vitamins and translation-related functions partition between the symbiotic partners in a highly similar manner in the two systems, despite the distinct evolutionary origin of the intrabacterial symbionts. Bacterial genes found in both mealybug genomes and complementing missing functions in both symbioses were likely integrated in ancestral mealybugs before T. mannipara and P. citri diversified. The high level of correspondence between the two mealybug systems and their highly intertwined metabolic pathways are unprecedented. Our work contributes to a better understanding of the only known intracellular symbiosis between two bacteria and suggests that the evolution of this unique symbiosis included the replacement of intrabacterial symbionts in ancestral mealybugs.

  • Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids.

    Manzano-Marín A, Szabó G, Simon JC, Horn M, Latorre A
    2017 - Environ. Microbiol., 1: 393-408

    Abstract: 

    Virtually all aphids maintain an obligate mutualistic symbiosis with bacteria from the Buchnera genus, which produce essential nutrients for their aphid hosts. Most aphids from the Lachninae subfamily have been consistently found to house additional endosymbionts, mainly Serratia symbiotica. This apparent dependence on secondary endosymbionts was proposed to have been triggered by the loss of the riboflavin biosynthetic capability by Buchnera in the Lachninae last common ancestor. However, an integral large-scale analysis of secondary endosymbionts in the Lachninae is still missing, hampering the interpretation of the evolutionary and genomic analyses of these endosymbionts. Here, we analysed the endosymbionts of selected representatives from seven different Lachninae genera and nineteen species, spanning four tribes, both by FISH (exploring the symbionts' morphology and tissue tropism) and 16S rRNA gene sequencing. We demonstrate that all analysed aphids possess dual symbiotic systems, and while most harbour S. symbiotica, some have undergone symbiont replacement by other phylogenetically-distinct bacterial taxa. We found that these secondary associates display contrasting cell shapes and tissue tropism, and some appear to be lineage-specific. We propose a scenario for symbiont establishment in the Lachninae, followed by changes in the symbiont's tissue tropism and symbiont replacement events, thereby highlighting the extraordinary versatility of host-symbiont interactions.

  • Metabolic and physiological interdependencies in the Bathymodiolus azoricus symbiosis.

    Ponnudurai R, Kleiner M, Sayavedra L, Petersen JM, Moche M, Otto A, Becher D, Takeuchi T, Satoh N, Dubilier N, Schweder T, Markert S
    2017 - ISME J, 11: 463–477

    Abstract: 

    The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners. Our study revealed that key metabolic functions are most likely accomplished jointly by B. azoricus and its symbionts: (1) CO2 is pre-concentrated by the host for carbon fixation by the sulfur-oxidizing symbiont, and (2) the host replenishes essential biosynthetic TCA cycle intermediates for the sulfur-oxidizing symbiont. In return (3), the sulfur oxidizer may compensate for the host's putative deficiency in amino acid and cofactor biosynthesis. We also identified numerous 'symbiosis-specific' host proteins by comparing symbiont-containing and symbiont-free host tissues and symbiont fractions. These proteins included a large complement of host digestive enzymes in the gill that are likely involved in symbiont digestion and carbon transfer from the symbionts to the host.The ISME Journal advance online publication, 1 November 2016; doi:10.1038/ismej.2016.124.

  • Stable isotope techniques for the assessment of host and microbiota response during gastrointestinal dysfunction

    Butler RN, Kosek M, Krebs N, Loechl C, Loy A, Owino V, Zimmermann M, and Morrison DJ
    2017 - J Pediatr Gastroenterol Nutr, 64: 8-14

    Abstract: 

    The International Atomic Energy Agency convened a technical meeting on environmental enteric dysfunction (EED) in Vienna (28th – 30th October 2015; https://nucleus.iaea.org/HHW/Nutrition/EED_Technical_Meeting/index.html) to bring together international experts in the fields of EED, nutrition and stable isotope technologies. Advances in stable isotope labelling techniques open up new possibilities to improve our understanding of gastrointestinal dysfunction and the role of the microbiota in host health. In the context of EED, little is known about the role gut dysfunction may play in macro- and micronutrient bioavailability and requirements and what the consequences may be for nutritional status and linear growth. Stable isotope labelling techniques have been used to assess intestinal mucosal injury and barrier function, carbohydrate digestion and fermentation, protein derived amino acid bioavailability and requirements, micronutrient bioavailability and to track microbe-microbe and microbe-host interactions at the single cell level. The non-invasive nature of stable isotope technologies potentially allows for low-hazard, field deployable tests of gut dysfunction that are applicable across all age-groups. The purpose of this review is to assess the state-of-the-art in the use of stable isotope technologies and to provide a perspective on where these technologies can be exploited to further our understanding of gut dysfunction in EED.

  • Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations

    Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, Berry D
    2017 - Environ. Microbiol., 1: 95-105

    Abstract: 

    An altered gut microbiota has been linked to obesity in adulthood, although little is known about childhood obesity. The aim of this study was to characterize the composition of the gut microbiota in obese (n = 42) and normal-weight (n = 36) children aged 6 to 16. Using 16S rRNA gene-targeted sequencing, we evaluated taxa with differential abundance according to age- and sex-normalized body mass index (BMI z-score). Obesity was associated with an altered gut microbiota characterized by elevated levels of Firmicutes and depleted levels of Bacteroidetes. Correlation network analysis revealed that the gut microbiota of obese children also had increased correlation density and clustering of operational taxonomic units (OTUs). Members of the Bacteroidetes were generally better predictors of BMI z-score and obesity than Firmicutes, which was likely due to discordant responses of Firmicutes OTUs. In accordance with these observations, the main metabolites produced by gut bacteria, short chain fatty acids (SCFAs), were higher in obese children, suggesting elevated substrate utilisation. Multiple taxa were correlated with SCFA levels, reinforcing the tight link between the microbiota, SCFAs and obesity. Our results suggest that gut microbiota dysbiosis and elevated fermentation activity may be involved in the etiology of childhood obesity.

Book chapters and other publications

4 Publications found
  • Genus Terriglobus

    Eichorst SA, Trojan D, Woebken D
    2017 - in press. in Bergey’s Manual of Systematics of Archaea and Bacteria. (William B. Whitman). John Wiley & Sons, Chichester, England

    Abstract: 

    Terriglobus is a genus in the phylum Acidobacteria in the family Acidobacteriaceae, order Acidobacteriales, class Acidobacteriia, subdivision 1. It currently comprises five species - Terriglobus roseus, Terriglobus saanensis, Terriglobus tenax, Terriglobus aquaticus, and Terriglobus albidus. Members of the genus are widely distributed in soils including rhizosphere soils and the phyllosphere, but is also found in freshwater and in association with insects. This genus encompasses bacteria that are chemo-organotrophs and have obligatory aerobic metabolism with an optimal growth in mildly acidic (pH ~5 to 6) and mesophilic (ca. 25 to 30°C) conditions. Colonies of Terriglobus are typically circular in form with a convex elevation and can be with or without pink pigmentation. These bacteria can use a range of different carbon sources, and nitrogen is attained by exogenous amino acids or ammonium chloride. Cells are non-motile, Gram-stain-negative with a length and width ranging from 0.8 to 2.5 µm and 0.4 to 0.9 µm, respectively. Some strains produce extracellular material, which can be visualized by microscopy or in liquid culture, generating a floc/clumping phenotype. The dominant fatty acids are iso-C15:0 and C16:1 ω7c/ C16:1 ω6c. The DNA G+C content (mol%) ranges from 57.3 to 63.2%.

  • Hidden potential: Diet-driven changes in redox level shape the rumen microbiome

    Berry D
    2017 - Environmental microbiology, 1: 19-20
  • The unexpected versatility of the cellulosome

    Berry D
    2017 - Environmental microbiology, 1: 13-14
  • Principles of Systems Biology, No. 13 - A pathogen-resistant designer microbiota

    Stecher B, Clavel T, Loy A, Berry D
    2017 - Cell Systems, 4: 3-6